6-cube

From HandWiki
Short description: 6-dimensional hypercube
6-cube
Hexeract
6-cube graph.svg
Orthogonal projection
inside Petrie polygon
Orange vertices are doubled, and the center yellow has 4 vertices
Type Regular 6-polytope
Family hypercube
Schläfli symbol {4,34}
Coxeter diagram CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-faces 12 {4,3,3,3} 5-cube graph.svg
4-faces 60 {4,3,3} 4-cube graph.svg
Cells 160 {4,3} 3-cube graph.svg
Faces 240 {4} 2-cube.svg
Edges 192
Vertices 64
Vertex figure 5-simplex
Petrie polygon dodecagon
Coxeter group B6, [34,4]
Dual 6-orthoplex 6-orthoplex.svg
Properties convex, Hanner polytope

In geometry, a 6-cube is a six-dimensional hypercube with 64 vertices, 192 edges, 240 square faces, 160 cubic cells, 60 tesseract 4-faces, and 12 5-cube 5-faces.

It has Schläfli symbol {4,34}, being composed of 3 5-cubes around each 4-face. It can be called a hexeract, a portmanteau of tesseract (the 4-cube) with hex for six (dimensions) in Greek. It can also be called a regular dodeca-6-tope or dodecapeton, being a 6-dimensional polytope constructed from 12 regular facets.

Related polytopes

It is a part of an infinite family of polytopes, called hypercubes. The dual of a 6-cube can be called a 6-orthoplex, and is a part of the infinite family of cross-polytopes.

Applying an alternation operation, deleting alternating vertices of the 6-cube, creates another uniform polytope, called a 6-demicube, (part of an infinite family called demihypercubes), which has 12 5-demicube and 32 5-simplex facets.

As a configuration

This configuration matrix represents the 6-cube. The rows and columns correspond to vertices, edges, faces, cells, 4-faces and 5-faces. The diagonal numbers say how many of each element occur in the whole 6-cube. The nondiagonal numbers say how many of the column's element occur in or at the row's element.[1][2]

[math]\displaystyle{ \begin{bmatrix}\begin{matrix}64 & 6 & 15 & 20 & 15 & 6 \\ 2 & 192 & 5 & 10 & 10 & 5 \\ 4 & 4 & 240 & 4 & 6 & 4 \\ 8 & 12 & 6 & 160 & 3 & 3 \\ 16 & 32 & 24 & 8 & 60 & 2 \\ 32 & 80 & 80 & 40 & 10 & 12 \end{matrix}\end{bmatrix} }[/math]

Cartesian coordinates

Cartesian coordinates for the vertices of a 6-cube centered at the origin and edge length 2 are

(±1,±1,±1,±1,±1,±1)

while the interior of the same consists of all points (x0, x1, x2, x3, x4, x5) with −1 < xi < 1.

Construction

There are three Coxeter groups associated with the 6-cube, one regular, with the C6 or [4,3,3,3,3] Coxeter group, and a half symmetry (D6) or [33,1,1] Coxeter group. The lowest symmetry construction is based on hyperrectangles or proprisms, cartesian products of lower dimensional hypercubes.

Name Coxeter Schläfli Symmetry Order
Regular 6-cube CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node f1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
{4,3,3,3,3} [4,3,3,3,3] 46080
Quasiregular 6-cube CDel node f1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png [3,3,3,31,1] 23040
hyperrectangle CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png {4,3,3,3}×{} [4,3,3,3,2] 7680
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.png {4,3,3}×{4} [4,3,3,2,4] 3072
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png {4,3}2 [4,3,2,4,3] 2304
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.png {4,3,3}×{}2 [4,3,3,2,2] 1536
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.png {4,3}×{4}×{} [4,3,2,4,2] 768
CDel node 1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.png {4}3 [4,2,4,2,4] 512
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.png {4,3}×{}3 [4,3,2,2,2] 384
CDel node 1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.png {4}2×{}2 [4,2,4,2,2] 256
CDel node 1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.png {4}×{}4 [4,2,2,2,2] 128
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.png {}6 [2,2,2,2,2] 64

Projections

orthographic projections
Coxeter plane B6 B5 B4
Graph 6-cube t0.svg 6-cube t0 B5.svg 4-cube t0.svg
Dihedral symmetry [12] [10] [8]
Coxeter plane Other B3 B2
Graph 6-cube column graph.svg 6-cube t0 B3.svg 6-cube t0 B2.svg
Dihedral symmetry [2] [6] [4]
Coxeter plane A5 A3
Graph 6-cube t0 A5.svg 6-cube t0 A3.svg
Dihedral symmetry [6] [4]
3D Projections
File:Hexeract.ogv
6-cube 6D simple rotation through 2Pi with 6D perspective projection to 3D.
6Cube-QuasiCrystal.png
6-cube quasicrystal structure orthographically projected
to 3D using the golden ratio.
Hexeract-q1q4-q2q5-q3q6.gif
A 3D perspective projection of an hexeract undergoing a triple rotation about the X-W1, Y-W2 and Z-W3 orthogonal planes.

Related polytopes

The 64 vertices of a 6-cube also represent a regular skew 4-polytope {4,3,4 | 4}. Its net can be seen as a 4×4×4 matrix of 64 cubes, a periodic subset of the cubic honeycomb, {4,3,4}, in 3-dimensions. It has 192 edges, and 192 square faces. Opposite faces fold together into a 4-cycle. Each fold direction adds 1 dimension, raising it into 6-space.

The 6-cube is 6th in a series of hypercube:

This polytope is one of 63 uniform 6-polytopes generated from the B6 Coxeter plane, including the regular 6-cube or 6-orthoplex.


References

  1. Coxeter, Regular Polytopes, sec 1.8 Configurations
  2. Coxeter, Complex Regular Polytopes, p.117

External links

Fundamental convex regular and uniform polytopes in dimensions 2–10
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform 4-polytope 5-cell 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds