Quarter 5-cubic honeycomb
From HandWiki
quarter 5-cubic honeycomb | |
---|---|
(No image) | |
Type | Uniform 5-honeycomb |
Family | Quarter hypercubic honeycomb |
Schläfli symbol | q{4,3,3,3,4} |
Coxeter-Dynkin diagram | = |
5-face type | h{4,33}, h4{4,33}, |
Vertex figure | Rectified 5-cell antiprism or Stretched birectified 5-simplex |
Coxeter group | [math]\displaystyle{ {\tilde{D}}_5 }[/math]×2 = 31,1,3,31,1 |
Dual | |
Properties | vertex-transitive |
In five-dimensional Euclidean geometry, the quarter 5-cubic honeycomb is a uniform space-filling tessellation (or honeycomb). It has half the vertices of the 5-demicubic honeycomb, and a quarter of the vertices of a 5-cube honeycomb.[1] Its facets are 5-demicubes and runcinated 5-demicubes.
Related honeycombs
See also
Regular and uniform honeycombs in 5-space:
- 5-cube honeycomb
- 5-demicube honeycomb
- 5-simplex honeycomb
- Truncated 5-simplex honeycomb
- Omnitruncated 5-simplex honeycomb
Notes
- ↑ Coxeter, Regular and Semi-Regular Polytopes III, (1988), p318
References
- Kaleidoscopes: Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45] See p318 [2]
- Klitzing, Richard. "5D Euclidean tesselations#5D". https://bendwavy.org/klitzing/dimensions/flat.htm. x3o3o x3o3o *b3*e - spaquinoh
Fundamental convex regular and uniform honeycombs in dimensions 2-9
| ||||||
---|---|---|---|---|---|---|
Space | Family | [math]\displaystyle{ {\tilde{A}}_{n-1} }[/math] | [math]\displaystyle{ {\tilde{C}}_{n-1} }[/math] | [math]\displaystyle{ {\tilde{B}}_{n-1} }[/math] | [math]\displaystyle{ {\tilde{D}}_{n-1} }[/math] | [math]\displaystyle{ {\tilde{G}}_2 }[/math] / [math]\displaystyle{ {\tilde{F}}_4 }[/math] / [math]\displaystyle{ {\tilde{E}}_{n-1} }[/math] |
E2 | Uniform tiling | {3[3]} | δ3 | hδ3 | qδ3 | Hexagonal |
E3 | Uniform convex honeycomb | {3[4]} | δ4 | hδ4 | qδ4 | |
E4 | Uniform 4-honeycomb | {3[5]} | δ5 | hδ5 | qδ5 | 24-cell honeycomb |
E5 | Uniform 5-honeycomb | {3[6]} | δ6 | hδ6 | qδ6 | |
E6 | Uniform 6-honeycomb | {3[7]} | δ7 | hδ7 | qδ7 | 222 |
E7 | Uniform 7-honeycomb | {3[8]} | δ8 | hδ8 | qδ8 | 133 • 331 |
E8 | Uniform 8-honeycomb | {3[9]} | δ9 | hδ9 | qδ9 | 152 • 251 • 521 |
E9 | Uniform 9-honeycomb | {3[10]} | δ10 | hδ10 | qδ10 | |
En-1 | Uniform (n-1)-honeycomb | {3[n]} | δn | hδn | qδn | 1k2 • 2k1 • k21 |
Original source: https://en.wikipedia.org/wiki/Quarter 5-cubic honeycomb.
Read more |