Ak singularity

From HandWiki
Short description: Description of the degeneracy of a function


In mathematics, and in particular singularity theory, an Ak singularity, where k ≥ 0 is an integer, describes a level of degeneracy of a function. The notation was introduced by V. I. Arnold.

Let f:n be a smooth function. We denote by Ω(n,) the infinite-dimensional space of all such functions. Let diff(n) denote the infinite-dimensional Lie group of diffeomorphisms nn, and diff() the infinite-dimensional Lie group of diffeomorphisms . The product group diff(n)×diff() acts on Ω(n,) in the following way: let φ:nn and ψ: be diffeomorphisms and f:n any smooth function. We define the group action as follows:

(φ,ψ)f:=ψfφ1

The orbit of f , denoted orb(f), of this group action is given by

orb(f)={ψfφ1:φdiff(n),ψdiff()} .

The members of a given orbit of this action have the following fact in common: we can find a diffeomorphic change of coordinate in n and a diffeomorphic change of coordinate in such that one member of the orbit is carried to any other. A function f is said to have a type Ak-singularity if it lies in the orbit of

f(x1,,xn)=1+ε1x12++εn1xn12±xnk+1

where εi=±1 and k ≥ 0 is an integer.

By a normal form we mean a particularly simple representative of any given orbit. The above expressions for f give normal forms for the type Ak-singularities. The type Ak-singularities are special because they are amongst the simple singularities, this means that there are only a finite number of other orbits in a sufficiently small neighbourhood of the orbit of f.

This idea extends over the complex numbers where the normal forms are much simpler; for example: there is no need to distinguish εi = +1 from εi = −1.

References

  • Arnold, V. I.; Varchenko, A. N.; Gusein-Zade, S. M. (1985), The Classification of Critical Points, Caustics and Wave Fronts: Singularities of Differentiable Maps, Vol 1, Birkhäuser, ISBN 0-8176-3187-9