Astronomy:3700 Geowilliams
Discovery [1] | |
---|---|
Discovered by | C. Shoemaker E. Shoemaker |
Discovery site | Palomar Obs. |
Discovery date | 23 October 1984 |
Designations | |
(3700) Geowilliams | |
Named after | George E. Williams [1] (Australian geologist) |
1984 UL2 · 1973 YF2 1977 UJ | |
Minor planet category | main-belt [1][2] · (inner)[3] background [4] |
Orbital characteristics [2] | |
Epoch 23 March 2018 (JD 2458200.5) | |
Uncertainty parameter 0 | |
Observation arc | 43.54 yr (15,902 d) |
|{{{apsis}}}|helion}} | 2.9602 AU |
|{{{apsis}}}|helion}} | 1.8695 AU |
2.4148 AU | |
Eccentricity | 0.2258 |
Orbital period | 3.75 yr (1,371 d) |
Mean anomaly | 293.18° |
Mean motion | 0° 15m 45.36s / day |
Inclination | 12.121° |
Longitude of ascending node | 289.16° |
153.06° | |
Physical characteristics | |
Mean diameter | 7.712±0.130 km[5] 7.74±1.83 km[6] 7.753±0.152 km[7] 8.70±0.30 km[8] 8.82±0.86 km[9] 8.97 km (calculated)[3] |
Rotation period | 14.383±0.0183 h[10] 14.387±0.003 h[lower-alpha 1] |
Geometric albedo | 0.20 (assumed)[3] 0.227±0.045[9] 0.23±0.13[6] 0.233±0.033[8] 0.2970±0.0516[5] |
SMASS = S k [2] | |
Absolute magnitude (H) | 12.443±0.002 (R)[10] 12.50[5][8][9] 12.6[2][3] 12.89[6] 12.94±0.46[11] |
3700 Geowilliams, provisional designation 1984 UL2, is a stony background asteroid from the inner regions of the asteroid belt, approximately 8 kilometers (5 miles) in diameter. It was discovered on 23 October 1984, by American astronomer couple Carolyn and Eugene Shoemaker at the Palomar Observatory in California, United States.[1] The S k-subtype has a rotation period of 14.38 hours. It was named for Australian geologist George E. Williams.[1]
Orbit and classification
Geowilliams is a non-family asteroid from the main belt's background population.[4] It orbits the Sun in the inner main-belt at a distance of 1.9–3.0 AU once every 3 years and 9 months (1,371 days; semi-major axis of 2.41 AU). Its orbit has an eccentricity of 0.23 and an inclination of 12° with respect to the ecliptic.[2] The body's observation arc begins with its first observation as 1973 YF2 at Crimea-Nauchnij in December 1973, almost 11 years prior to its official discovery observation at Palomar.[1]
Physical characteristics
In the SMASS classification, Geowilliams is a Sk-subtype that transitions between the common S-type asteroid and the K-type asteroid. The latter spectral type is often found among members of the Eos family.[2]
Rotation period
In January 2008, a rotational lightcurve of Geowilliams was obtained from photometric observations by Australian amateur astronomer David Higgins at the Hunters Hill Observatory (E14). Lightcurve analysis gave a well-defined rotation period of 14.387 hours with a brightness variation of 0.40 magnitude ({{{1}}}).[lower-alpha 1] In July 2010, a similar period of 14.383 hours and an amplitude of 0.42 was measured at the Palomar Transient Factory in California ({{{1}}}).[10]
Diameter and albedo
According to the surveys carried out by the Japanese Akari satellite and the NEOWISE mission of NASA's Wide-field Infrared Survey Explorer, Geowilliams measures between 7.712 and 8.82 kilometers in diameter and its surface has an albedo between 0.227 and 0.297.[5][6][7][8][9]
The Collaborative Asteroid Lightcurve Link assumes a standard albedo for a stony asteroid of 0.20, and calculates a diameter of 8.97 kilometers based on an absolute magnitude of 12.6.[3]
Naming
This minor planet was named after Australian geologist George E. Williams who discovered the Acraman crater when he worked for BHP in South Australia. The old 90-kilometer impact structure is one of the largest meteorite impact craters known on Earth and the largest one on the Australian continent.[1] The official naming citation was published by the Minor Planet Center on 2 February 1988 (M.P.C. 12810).[12]
Notes
- ↑ 1.0 1.1 David Higgins (2011): rotation period 14.387±0.003 hours with a brightness amplitude of 0.40±0.02 mag. Quality code is 3. Summary figures for (3700) Geowilliams at the LCDB and archived website of the Hunters Hill Observatory by David Higgins.
References
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 "3700 Geowilliams (1984 UL2)". Minor Planet Center. https://www.minorplanetcenter.net/db_search/show_object?object_id=3700.
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 "JPL Small-Body Database Browser: 3700 Geowilliams (1984 UL2)". Jet Propulsion Laboratory. https://ssd.jpl.nasa.gov/sbdb.cgi?sstr=2003700.
- ↑ 3.0 3.1 3.2 3.3 3.4 "LCDB Data for (3700) Geowilliams". Asteroid Lightcurve Database (LCDB). http://www.minorplanet.info/PHP/generateOneAsteroidInfo.php?AstInfo=3700%7CGeowilliams.
- ↑ 4.0 4.1 "Asteroid 3700 Geowilliams – Proper Elements". AstDyS-2, Asteroids – Dynamic Site. https://newton.spacedys.com/astdys/index.php?pc=1.1.6&n=3700.
- ↑ 5.0 5.1 5.2 5.3 Mainzer, A.; Grav, T.; Masiero, J.; Hand, E.; Bauer, J.; Tholen, D. et al. (November 2011). "NEOWISE Studies of Spectrophotometrically Classified Asteroids: Preliminary Results". The Astrophysical Journal 741 (2): 25. doi:10.1088/0004-637X/741/2/90. Bibcode: 2011ApJ...741...90M. (catalog)
- ↑ 6.0 6.1 6.2 6.3 Nugent, C. R.; Mainzer, A.; Bauer, J.; Cutri, R. M.; Kramer, E. A.; Grav, T. et al. (September 2016). "NEOWISE Reactivation Mission Year Two: Asteroid Diameters and Albedos". The Astronomical Journal 152 (3): 12. doi:10.3847/0004-6256/152/3/63. Bibcode: 2016AJ....152...63N.
- ↑ 7.0 7.1 Masiero, Joseph R.; Grav, T.; Mainzer, A. K.; Nugent, C. R.; Bauer, J. M.; Stevenson, R. et al. (August 2014). "Main-belt Asteroids with WISE/NEOWISE: Near-infrared Albedos". The Astrophysical Journal 791 (2): 11. doi:10.1088/0004-637X/791/2/121. Bibcode: 2014ApJ...791..121M.
- ↑ 8.0 8.1 8.2 8.3 Masiero, Joseph R.; Mainzer, A. K.; Grav, T.; Bauer, J. M.; Cutri, R. M.; Nugent, C. et al. (November 2012). "Preliminary Analysis of WISE/NEOWISE 3-Band Cryogenic and Post-cryogenic Observations of Main Belt Asteroids". The Astrophysical Journal Letters 759 (1): 5. doi:10.1088/2041-8205/759/1/L8. Bibcode: 2012ApJ...759L...8M.
- ↑ 9.0 9.1 9.2 9.3 Usui, Fumihiko; Kuroda, Daisuke; Müller, Thomas G.; Hasegawa, Sunao; Ishiguro, Masateru; Ootsubo, Takafumi et al. (October 2011). "Asteroid Catalog Using Akari: AKARI/IRC Mid-Infrared Asteroid Survey". Publications of the Astronomical Society of Japan 63 (5): 1117–1138. doi:10.1093/pasj/63.5.1117. Bibcode: 2011PASJ...63.1117U. (online, AcuA catalog p. 153)
- ↑ 10.0 10.1 10.2 Waszczak, Adam; Chang, Chan-Kao; Ofek, Eran O.; Laher, Russ; Masci, Frank; Levitan, David et al. (September 2015). "Asteroid Light Curves from the Palomar Transient Factory Survey: Rotation Periods and Phase Functions from Sparse Photometry". The Astronomical Journal 150 (3): 35. doi:10.1088/0004-6256/150/3/75. Bibcode: 2015AJ....150...75W.
- ↑ Veres, Peter; Jedicke, Robert; Fitzsimmons, Alan; Denneau, Larry; Granvik, Mikael; Bolin, Bryce et al. (November 2015). "Absolute magnitudes and slope parameters for 250,000 asteroids observed by Pan-STARRS PS1 - Preliminary results". Icarus 261: 34–47. doi:10.1016/j.icarus.2015.08.007. Bibcode: 2015Icar..261...34V.
- ↑ "MPC/MPO/MPS Archive". Minor Planet Center. https://www.minorplanetcenter.net/iau/ECS/MPCArchive/MPCArchive_TBL.html.
External links
- "Lightcurves by David Higgins". http://www.david-higgins.com/Astronomy/asteroid/lightcurves.htm.
- George E. Williams – University Staff Director, University of Adelaide
- Asteroid Lightcurve Database (LCDB), query form (info )
- Dictionary of Minor Planet Names, Google books
- Discovery Circumstances: Numbered Minor Planets (1)-(5000) – Minor Planet Center
- 3700 Geowilliams at AstDyS-2, Asteroids—Dynamic Site
- 3700 Geowilliams at the JPL Small-Body Database
Original source: https://en.wikipedia.org/wiki/3700 Geowilliams.
Read more |