Biology:Polyporales

From HandWiki
Short description: Order of fungi

Polyporales
Ganoderma applanatum02.jpg
Ganoderma applanatum
Scientific classification e
Domain: Eukaryota
Kingdom: Fungi
Division: Basidiomycota
Class: Agaricomycetes
Subclass: incertae sedis
Order: Polyporales
Gäum. (1926)
Families

   Cystostereaceae
   Fomitopsidaceae
   Fragiliporiaceae[1]
   Ganodermataceae
   Gelatoporiaceae
   Meripilaceae
   Meruliaceae
   Phanerochaetaceae
   Polyporaceae
   Sparassidaceae
   Steccherinaceae
   Xenasmataceae

Synonyms[2]
  • Aphyllophorales Rea[3]
  • Coriolales Jülich (1981)
  • Fomitopsidales Jülich (1981)
  • Ganodermatales Jülich (1981)
  • Grifolales Jülich (1981)
  • Perenniporiales Jülich (1981)
  • Phaeolales Jülich (1981)
  • Poriales Locquin (1981)
  • Trametales Boidin, Mugnier & Canales (1998)[4]

The Polyporales are an order of about 1800 species of fungi in the division Basidiomycota. The order includes some (but not all) polypores as well as many corticioid fungi and a few agarics (mainly in the genus Lentinus). Many species within the order are saprotrophic, most of them wood-rotters. Some genera, such as Ganoderma and Fomes, contain species that attack living tissues and then continue to degrade the wood of their dead hosts. Those of economic importance include several important pathogens of trees and a few species that cause damage by rotting structural timber. Some of the Polyporales are commercially cultivated and marketed for use as food items or in traditional Chinese medicine.

Taxonomy

History

The order was originally proposed in 1926 by Swiss mycologist Ernst Albert Gäumann to accommodate species within the phylum Basidiomycota producing basidiocarps (fruit bodies) showing a gymnocapous mode of development (forming the spore-bearing surface externally). As such, the order included the ten families Brachybasidiaceae, Corticiaceae, Clavariaceae, Cyphellaceae, Dictyolaceae, Fistulinaceae, Polyporaceae, Radulaceae, Tulasnellaceae, and Vuilleminiaceae, representing a mix of poroid, corticioid, cyphelloid, and clavarioid fungi.[5]

In a series of publications in 1932, E.J.H. Corner explained the occurrence of different types of hyphae in the fruit bodies of polypore fungi. He introduced the concept of hyphal analysis, which later become a fundamental character in polypore taxonomy.[6][7][8]

The order Polyporales was not widely adopted by Gäumann's contemporaries; most mycologists and reference works preferring to use the catch-all, artificial order Aphyllophorales for polypores and other "non-gilled fungi". When an attempt was made to introduce a more natural, morphology-based classification of the fungi in the 1980s and 1990s, the order was still overlooked. A standard 1995 reference work placed most polypores and corticioid fungi in the Ganodermatales, Poriales, and Stereales.[9]

Current status

/residual
/phlebioid

Phanerochaetaceae

Irpicaceae

Meruliaceae

Candelabrochaete africana

Steccherinaceae

Cerrenaceae*

Panaceae*

Hyphodermataceae

Meripilaceae

Podoscyphaceae

/hypochnicium & /climacocystis

/core polyporoid

Polyporaceae

Grifolaceae

/gelatoporia

Gelatoporiaceae*

Mycoleptodonoides vassiljevae

Auriporia aurea

/antrodia

Fomitopsidaceae

Laetiporaceae

/fibroporia + amyloporia

Dacryobolaceae

Sparassidaceae

/skeletocutis-tyromyces

Incrustoporiaceae

Ischnodermataceae

Simplified phylogenetic overview of the families (bolded) and clades (preceded with "/") recognized in Justo et al. 2017. Families marked with (*) were newly created.[10]

Molecular research, based on cladistic analysis of DNA sequences, has resurrected and redefined the Polyporales (also known as the polyporoid clade).[11][12][13] Studies using a combination of rRNA gene sequences, single-copy protein-coding genes, [14][15] and genome-based phylogenetic analyses have shown that the Polyporales are a monophyletic group.[13][16][10] They are a member of the class Agaricomycetes, but have not been assigned to a subclass.[17] Though the precise boundaries of the order and its constituent families are yet to be resolved, it retains the core group of polypores in the family Polyporaceae, with additional species in the Fomitopsidaceae and Meripilaceae. It also includes polypores in the Ganodermataceae, which were previously assigned to their own separate order, the Ganodermatales, based on their distinctive basidiospore morphology. Corticioid fungi belonging to the Cystostereaceae, Meruliaceae, Phanerochaetaceae, and Xenasmataceae are also included, as are the cauliflower fungi in the Sparassidaceae.[18]

In an extensive molecular analysis, Manfred Binder and colleagues analyzed 6 genes from 373 species and confirmed the existence of four previously recognized lineages of Polyporales: the antrodia, core polyporoid, phlebioid, and residual polyporoid clades.[13] Extending this work, Alfredo Justo and colleagues proposed a phylogenetic overview of the Polyporales that included a new family-level classification. They assigned family names to 18 clades and four informal unranked clades. The families are listed below, followed by their taxonomic authorities and year of publication:[10]

Other families that putatively belong to the Polyporales, but for which molecular confirmation is absent or lacking, include Diachanthodaceae Jülich, (1981); Fragiliporiaceae Y.C.Dai, B.K.Cui & C.L.Zhao (2015); Hymenogrammaceae Jülich (1981); and Phaeotrametaceae Popoff ex Piątek (2005).[10] The Nigrofomitaceae, formerly placed in the Polyporales, was shown to be nested as a distinct lineage within the Hymenochaetales.[19]

The family Steccherinaceae was redefined in 2012 to contain most species of the poroid and hydnoid genera Antrodiella, Junghuhnia, and Steccherinum, as well as members of 12 other hydnoid and poroid genera that had been traditionally classified in the families Phanerochaetaceae, Polyporaceae, and Meruliaceae.[15] Several new genera were added to the Steccherinaceae in 2016–17.[20][21]

Ecology

The order is cosmopolitan and contains around 1800 species of fungi worldwide—about 1.5% of all known fungus species.[10] All species in the Polyporales are saprotrophs, most of them wood-rotters. Their fruit bodies are therefore typically found on living or moribund trees or on dead attached or fallen wood. Polyporales species that fruit on the ground are either root rot species–such as Laetiporus cincinnatus and Grifola frondosa, or are fruiting from buried pieces of substrate–such as Polyporus radicatus and P. melanopus.[22]

Wood-decay Polyporales reduce the volume of dead wood in the forest and are an important component of the carbon cycle.[13] Wood is composed of primarily three types of tissue: lignin, cellulose, and hemicelluloses. White rot species of Polyporales are efficient degraders of the decay-resistant polymer lignin, leaving partially degraded cellulose as a residue.[13] Brown rot species break down the cellulose fibres, leaving a brittle, brown lignin residue. Brown-rot residues such as humus can remain in the soil for hundreds of years, increasing aeration and water-holding capacity.[23]

Peroxidase enzymes that degrade lignin, such as lignin peroxidase, manganese peroxidase, or versatile peroxidase, are present in all white-rot members of the Polyporales, but absent in brown-rot species.[16][24][25] Oxidase enzymes, including members of the glucose-methanol-choline oxidoreductase family, play a key role in the breakdown of plant polymers because they generate hydrogen peroxide, which acts as the ultimate oxidizer in both white-rot and brown-rot decay.[26]

Two species of Polyporales, Daedalea quercina and Fomitopsis pinicola, use paralysing toxins to destroy and colonize nematodes that feed on their fruit bodies.[27]

Importance

Sparassis crispa (left) and Laetiporus sulphureus are two edible Polyporales species

Many wood-decay fungi in the genera Fomes, Fomitopsis and Ganoderma are pathogenic, causing butt and root rot of living trees and consequent losses in forestry plantations. Several species, such as the mine fungus Fibroporia vaillantii, can rot and damage structural timber.[28]

Several of the Polyporales, notably Ganoderma lucidum (ling-zhi), Grifola frondosa (maitake),[29] Taiwanofungus camphoratus (niú zhāng zhī),[30] Lignosus rhinocerotis,[31] and Trametes versicolor (yun-zhi),[32] are commercially cultivated and marketed for use in traditional Chinese medicine. The polypores Laetiporus sulphureus, Fomes fomentarius, Fomitopsis pinicola, Fomitopsis betulina, and Laricifomes officinalis have been widely used in central European folk medicine for the treatment of various diseases.[33]

Some species, including several members of the genera Laetiporus and Sparassis, are used as food.[34] Blackfellow's bread, or Laccocephalum mylittae, is an edible that is prized by Aboriginal Australians.[35] Lentinus squarrosulus is collected and eaten in Asian and African communities.[36]

Fomitopsis betulina was formerly used in the manufacture of charcoal crayons.[37] Amadou, a spongy material derived from the fruit bodies of Fomes fomentarius, has been used since ancient times as a tinder. More recently, it has been used by dentists as a styptic, or as a felt-like material for making hats and other items.[38] The anise-scented fruit bodies of Haploporus odorus were used by some tribes of Plains Indians as a component of sacred objects. Laricifomes officinalis was used by nineteenth century Pacific northwest shamans for carving spirit figures.[39] Some species, including dyer's polypore (Phaeolus schweinitzii) and purple dye polypore (Hapalopilus nidulans) are used in mushroom dyeing.[40]

Sequenced genomes

Several member of the Polyporales have had their genomes sequenced to help understand the genetic basis for the production of enzymes involved in the synthesis of bioactive compounds, or to elucidate the metabolic pathways of wood decay, including Ganoderma lucidum,[41] Lignosus rhinocerotis,[42] Dichomitus squalens,[16] Fomitopsis pinicola,[16] Trametes versicolor,[16] and Wolfiporia cocos.[16] Two sequenced fungi, Phanerochaete chrysosporium,[43] and Postia placenta,[44] serve as model species for researchers investigating the mechanism of white rot and brown rot, respectively.[45][46] (As of 2017), there have been 46 Polyporales genomes sequenced, representing about 7% of all sequenced fungal genomes.[10]

Fossil record

Fossilized fruit bodies of a Fomes species dating back to the Tertiary (66–2.6 Ma) were reported in Idaho in 1940.[47] A fossil fruit body of Ganodermites libycus was reported from the Early Miocene (23–2.6 Ma) in the Libyan Desert. This specimen is the earliest convincing fossil evidence for the Polyporales.[48]

Molecular clock techniques have been used to estimate the age of the Polyporales, suggesting that the order evolved either during the late Jurassic, about 203–250 Ma,[14] or, in more recent study, about 114 Ma.[49]

Genera Incertae sedis

There are several genera classified in the Polyporales that for various reason have not been assigned to a specific family. They are incertae sedis with respect to familial placement. Some may be poorly known and/or not included in DNA phylogenetic studies, or when they have been, did not clearly group with any named family (In some cases a new family must be created rather than the placement clarified.). These include:

References

  1. Zhao, Chang-Lin; Cui, Bao-Kai; Song, Jie; Dai, Yu-Cheng (2015). "Fragiliporiaceae, a new family of Polyporales (Basidiomycota)". Fungal Diversity 70 (1): 115–126. doi:10.1007/s13225-014-0299-0. 
  2. "Trametales Boidin". MycoBank. International Mycological Association. http://www.mycobank.org/BioloMICS.aspx?TableKey=14682616000000067&Rec=58805&Fields=All. 
  3. Rea, Carleton (1922). "British Basidiomycetae: A Handbook to the Larger British Fungi". Nature 111 (2781): 574. doi:10.1038/111213a0. Bibcode1923Natur.111..213B. https://www.biodiversitylibrary.org/page/17128409. 
  4. Boidin, J.; Mugnier, J.; Canales, R. (1998). "Taxonomie moleculaire des Aphyllophorales" (in fr). Mycotaxon 66: 445–491 (see p. 487). http://www.cybertruffle.org.uk/cyberliber/59575/0066/0487.htm. 
  5. Gäumann, E. (1926). "Vergleichende Morphologie der Pilze". Nature 117 (2954): 820. doi:10.1038/117820a0. Bibcode1926Natur.117..820.. 
  6. Corner E.J.H. (1932). "The fruit-body of Polystictus xanthopus, Fr.". Annals of Botany 46 (1): 71–111. doi:10.1093/oxfordjournals.aob.a090319. 
  7. Corner E.J.H. (1932). "A Fomes with two systems of hyphae". Transactions of the British Mycological Society 17 (1–2): 51–81. doi:10.1016/s0007-1536(32)80026-4. http://www.cybertruffle.org.uk/cyberliber/59351/0017/001/0051.htm. 
  8. Corner E.J.H. (1932). "The identification of the brown-root fungus". The Gardens' Bulletin; Straits Settlements 5: 317–350. https://biodiversitylibrary.org/page/43606107. 
  9. Dictionary of the Fungi (8th ed.). Wallingford, Oxford: CAB International. 1995. ISBN 978-0-85198-885-6. 
  10. 10.0 10.1 10.2 10.3 10.4 10.5 Justo, Alfredo; Miettinen, Otto; Floudas, Dimitrios; Ortiz-Santana, Beatriz; Sjökvist, Elisabet; Lindner, Daniel; Nakasone, Karen; Niemelä, Tuomo et al. (2017). "A revised family-level classification of the Polyporales (Basidiomycota)". Fungal Biology 121 (9): 798–824. doi:10.1016/j.funbio.2017.05.010. PMID 28800851. 
  11. Hibbett DS (2006). "A phylogenetic overview of the Agaricomycotina". Mycologia 98 (6): 917–925. doi:10.3852/mycologia.98.6.917. PMID 17486968.  "Archived copy". http://www1.univap.br/drauzio/index_arquivos/Myco09.pdf. 
  12. "The phylogenetic distribution of resupinate forms across the major clades of mushroom-forming fungi (Homobasidiomycetes)". Systematics and Biodiversity 3 (2): 113–157. 2005. doi:10.1017/s1477200005001623. 
  13. 13.0 13.1 13.2 13.3 13.4 Binder, Manfred; Justo, Alfredo; Riley, Robert; Salamov, Asaf; Lopez-Giraldez, Francesc; Sjökvist, Elisabet; Copeland, Alex; Foster, Brian et al. (2013). "Phylogenetic and phylogenomic overview of the Polyporales". Mycologia 105 (6): 1350–1373. doi:10.3852/13-003. PMID 23935031. 
  14. 14.0 14.1 Garcia-Sandoval, R.; Wang, Z.; Binder, M.; Hibbett, D.S. (2011). "Molecular phylogenetics of the Gloeophyllales and relative ages of clades of Agaricomycotina producing a brown rot". Mycologia 103 (1): 510–524. doi:10.3852/10-209. PMID 21186327. 
  15. 15.0 15.1 Miettinen, Otto; Larsson, Ellen; Sjökvist, Elisabet; Larsson, Karl-Henrik (2012). "Comprehensive taxon sampling reveals unaccounted diversity and morphological plasticity in a group of dimitic polypores (Polyporales, Basidiomycota)". Cladistics 28 (3): 251–270. doi:10.1111/j.1096-0031.2011.00380.x. PMID 34872189. Bibcode2002clad.book.....S. https://www.researchgate.net/publication/256859903. 
  16. 16.0 16.1 16.2 16.3 16.4 16.5 "The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes". Science 336 (6089): 1715–1719. 2012. doi:10.1126/science.1221748. PMID 22745431. Bibcode2012Sci...336.1715F. 
  17. Kendrick, Bryce (2017). The Fifth Kingdom. An Introduction to Mycology (4th ed.). Indianapolis: Hackett Publishing. pp. 124–125. ISBN 978-1-58510-459-8. 
  18. "Index Fungorum - Search Page". http://www.indexfungorum.org/Names/Names.asp. 
  19. Zhou, Li-Wei; Wang, Xue-Wei; Vlasák, Josef; Ren, Guang-Juan (2017). "Resolution of phylogenetic position of Nigrofomitaceae within Hymenochaetales (Basidiomycota) and Nigrofomes sinomelanoporus sp. nov. (Nigrofomitaceae) from China". MycoKeys 29 (29): 1–13. doi:10.3897/mycokeys.29.21250. PMID 29559823. open access
  20. Miettinen, Otto; Ryvarden, Leif (2016). "Polypore genera Antella, Austeria, Butyrea, Citripora, Metuloidea and Trulla (Steccherinaceae, Polyporales)". Annales Botanici Fennici 53 (3–4): 157–172. doi:10.5735/085.053.0403. 
  21. Kotiranta, Heikki; Kulju, Matti; Miettinen, Otto (2017). "Caudicicola gracilis (Polyporales, Basidiomycota), a new polypore species and genus from Finland". Annales Botanici Fennici 54 (1–3): 159–167. doi:10.5735/085.054.0325. 
  22. Volk, Tom (2000). "An introduction to the characters used to identify poroid wood decay fungi". McIlvainea 14 (2): 74–82. http://botit.botany.wisc.edu/toms_fungi/polypore.html. 
  23. Alexopoulos, C.J.; Mims, C.W.; Blackwell, M. (1996). Introductory Mycology. New York: Wiley. pp. 570–571. ISBN 978-0-471-52229-4. 
  24. Ruiz-Dueñas, Francisco J.; Lundell, Taina; Floudas, Dimitrios; Nagy, Laszlo G.; Barrasa, José M.; Hibbett, David S.; Martínez, Angel T. (2013). "Lignin-degrading peroxidases in Polyporales: an evolutionary survey based on 10 sequenced genomes". Mycologia 105 (6): 1428–1444. doi:10.3852/13-059. PMID 23921235. https://digital.csic.es/bitstream/10261/96105/1/MYCOLOGIA-2013.pdf. 
  25. 25.0 25.1 Floudas, D.; Hibbett, D.S. (2015). "Revisiting the taxonomy of Phanerochaete (Polyporales, Basidiomycota) using a four gene dataset and extensive ITS sampling". Fungal Biology 119 (8): 679–719. doi:10.1016/j.funbio.2015.04.003. PMID 26228559. 
  26. Ferreira, Patricia; Carro, Juan; Serrano, Ana; Martínez, Angel T. (2015). "A survey of genes encoding H2O2-producing GMC oxidoreductases in 10 Polyporales genomes". Mycologia 107 (6): 1105–1119. doi:10.3852/15-027. PMID 26297778. http://zaguan.unizar.es/record/64502. 
  27. de Freitas Soares, Filippe Elias; Sufiate, Bruna Leite; de Queiroz, José Humberto (2018). "Nematophagous fungi: Far beyond the endoparasite, predator and ovicidal groups". Agriculture and Natural Resources 52: 1–8. doi:10.1016/j.anres.2018.05.010.  open access
  28. Reinprecht, Ladislav (2016). Wood Deterioration, Protection and Maintenance. Wiley. p. 147. ISBN 978-1-119-10651-7. https://books.google.com/books?id=aS3QDAAAQBAJ&pg=PT147. 
  29. Ulbricht, C.; Weissner, W.; Basch, E.; Giese, N.; Hammerness, P.; Rusie-Seamon, E.; Varghese, M.; Woods, J. (2009). "Maitake mushroom (Grifola frondosa): systematic review by the natural standard research collaboration". J Soc Integr Oncol 7 (2): 66–72. PMID 19476741. 
  30. Lee, Kuo-Hsiung; Morris-Natschke, Susan L.; Yang, Xiaoming; Huang, Rong; Zhou, Ting; Wu, Shou-Fan; Shi, Qian; Itokawa, Hideji (2012). "Recent progress of research on medicinal mushrooms, foods, and other herbal products used in traditional Chinese medicine". Journal of Traditional and Complementary Medicine 2 (2): 84–95. doi:10.1016/S2225-4110(16)30081-5. PMID 24716120. 
  31. Lau, B.F.; Abdullah, N.; Aminudin, N.; Lee, H.B.; Tan, P.J. (2015). "Ethnomedicinal uses, pharmacological activities, and cultivation of Lignosus spp. (tiger׳s milk mushrooms) in Malaysia – A review". Journal of Ethnopharmacology 169: 441–458. doi:10.1016/j.jep.2015.04.042. PMID 25937256. 
  32. Slaven, Zjalic; Adele, Fabbri Anna; Alessandra, Ricelli; Corrado, Fanelli; Massimo, Reverberi (2008). "Medicinal mushrooms". Microbial Biotechnology in Horticulture. CRC Press. p. 308. ISBN 978-1-57808-520-0. https://books.google.com/books?id=egMNAwAAQBAJ&pg=PA308. 
  33. Grienke, Ulrike; Zöll, Margit; Peintner, Ursula; Rollinger, Judith M. (2016). "European medicinal polypores—a modern view on traditional uses". Journal of Ethnopharmacology 154 (3): 564–583. doi:10.1016/j.jep.2014.04.030. PMID 24786572. 
  34. Kuo, Michael (2007). 100 Edible Mushrooms. Ann Arbor, Michigan: The University of Michigan Press. pp. 79–84; 108–110. ISBN 978-0-472-03126-9. https://archive.org/details/100ediblemushroo00kuom/page/79. 
  35. Newton, John (2016). The Oldest Foods on Earth: A History of Australian Native Foods with Recipes. NewSouth. p. 29. ISBN 978-1-74224-226-2. https://books.google.com/books?id=YDrJDAAAQBAJ&pg=PT29. 
  36. Lau, Beng Fye; Abdullah, Noorlidah (2017). "Bioprospecting of Lentinus squarrosulus Mont., an underutilized wild edible mushroom, as a potential source of functional ingredients: A review". Trends in Food Science & Technology 61: 116–131. doi:10.1016/j.tifs.2016.11.017. 
  37. McLean, Robert Colquhoun; Cook, Walter Robert Ivimey (1951). Textbook of Theoretical Botany. Longmans, Green. p. 317. ISBN 9780470585580. https://archive.org/details/textbookoftheore01mcle. 
  38. Pegler D. (2001). "Useful fungi of the world: Amadou and Chaga". Mycologist 15 (4): 153–154. doi:10.1016/S0269-915X(01)80004-5. ""In Germany, this soft, pliable 'felt' has been harvested for many years for a secondary function, namely in the manufacture of hats, dress adornments and purses."". 
  39. Blanchette, Robert A. (1997). "Haploporus odorus: a sacred fungus in traditional native American culture of the northern plains". Mycologia 89 (2): 233–240. doi:10.2307/3761076. http://www.cybertruffle.org.uk/cyberliber/59350/0089/002/0233.htm. 
  40. Bessette, Alan; Bessette, Arleen Rainis (2001). The Rainbow Beneath my Feet: A Mushroom Dyer's Field Guide. Syracuse, New York: Syracuse University Press. p. 96. ISBN 978-0-8156-0680-2. 
  41. "Genome sequence of the model medicinal mushroom Ganoderma lucidum". Nature Communications 3 (1): 913. 2012. doi:10.1038/ncomms1923. PMID 22735441. Bibcode2012NatCo...3..913C. 
  42. Yap, H.Y.; Chooi, Y.H.; Firdaus-Raih, M.; Fung, S.Y.; Ng, S.T.; Tan, C.S.; Tan, N.H. (2014). "The genome of the Tiger Milk mushroom, Lignosus rhinocerotis, provides insights into the genetic basis of its medicinal properties". BMC Genomics 15 (1): 635. doi:10.1186/1471-2164-15-635. PMID 25073817. 
  43. "Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78". Nature Biotechnology 22 (6): 695–700. 2004. doi:10.1038/nbt967. PMID 15122302. 
  44. "Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion". Proceedings of the National Academy of Sciences USA 106 (6): 1954–1959. 2009. doi:10.1073/pnas.0809575106. PMID 19193860. Bibcode2009PNAS..106.1954M. 
  45. Kameshwar, Ayyappa Kumar Sista; Qin, Wensheng (2017). "Metadata Analysis of Phanerochaete chrysosporium gene expression data identified common CAZymes encoding gene expression profiles involved in cellulose and hemicellulose degradation". International Journal of Biological Sciences 13 (1): 85–99. doi:10.7150/ijbs.17390. PMID 28123349. 
  46. Vanden Wymelenberg A.; Jill Gaskell; Michael Mozuch; Grzegorz Sabat; John Ralph; Oleksandr Skyba; Shawn D. Mansfield; Robert A. Blanchette et al. (2010). "Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium". Applied and Environmental Microbiology 76 (11): 3599–3610. doi:10.1128/AEM.00058-10. PMID 20400566. Bibcode2010ApEnM..76.3599V. 
  47. Brown, Roland W. (1940). "A bracket fungus from the late Tertiary of southwestern Idaho". Journal of the Washington Academy of Sciences 30 (10): 422–424. 
  48. Fleischmann, Andreas; Krings, Michael; Mayr, Helmut; Agerer, Reinhard (2007). "Structurally preserved polypores from the Neogene of North Africa: Ganodermites libycus gen. et sp. nov. (Polyporales, Ganodermataceae)". Review of Palaeobotany and Palynology 145 (1–2): 159–172. doi:10.1016/j.revpalbo.2006.10.001. Bibcode2007RPaPa.145..159F. 
  49. Zhao, Rui-Lin; Li, Guo-Jie; Sánchez-Ramírez, Santiago; Stata, Matt; Yang, Zhu-Liang; Wu, Gang; Dai, Yu-Cheng; He, Shuang-Hui et al. (2017). "A six-gene phylogenetic overview of Basidiomycota and allied phyla with estimated divergence times of higher taxa and a phyloproteomics perspective". Fungal Diversity 84 (1): 43–74. doi:10.1007/s13225-017-0381-5. 
  50. Gómez-Montoya, N.; Rajchenberg, M.; Robledo, G.L. (2017). "Aegis boa (Polyporales, Basidiomycota) a new neotropical genus and species based on morphological data and phylogenetic evidences". Mycosphere 8 (6): 1261–1269. doi:10.5943/mycosphere/8/6/11.  open access
  51. Karasiński, Dariusz; Niemelä, Tuomo (2016). "Anthoporia, a new genus in the Polyporales (Agaricomycetes)". Polish Botanical Journal 61 (1): 7–14. doi:10.1515/pbj-2016-0017. https://www.degruyter.com/downloadpdf/j/pbj.2016.61.issue-1/pbj-2016-0017/pbj-2016-0017.pdf.  open access
  52. Duhem, Bernard; Schultheis, Ben (2011). "Bourdotiella complicata gen. et sp. nov. de France" (in fr). Cryptogamie, Mycologie 32 (4): 391–401. doi:10.7872/crym.v32.iss4.2011.391. 
  53. "New taxa and new combinations in tropical corticioid fungi, (Basidiomycotina, Aphyllophorales)". Synopsis Fungorum 20: 33–41. 2005. 
  54. Qin, Wen-Min; Wu, Fang; Zhou, Li-Wei (2016). "Donkioporiella mellea gen. et sp. nov. (Polyporales, Basidiomycota) from Guangxi, China". Cryptogamie, Mycologie 37 (4): 437–447. doi:10.7872/crym/v37.iss4.2016.437. 
  55. Jülich W. (1980). "Notulae et novitates Muluenses". Botanical Journal of the Linnean Society 81: 43–6. doi:10.1111/j.1095-8339.1980.tb00940.x. 
  56. "Some new tropical genera and species of corticioid fungi (Basidiomycotina, Aphyllophorales)". Synopsis Fungorum 18: 20–32. 2004. 
  57. Rick, J. (1940). "Resupinati Riograndenses II.". Annales Mycologici 38 (1): 56–60. http://www.cybertruffle.org.uk/cyberliber/59685/0038/001/0056.htm. 
  58. Duhem, Bernard; Buyck, Bart (2011). "Meruliophana mahorensis gen. et sp. nov. de l'île de Mayotte (France Outre-Mer)". Cryptogamie, Mycologie 32 (2): 135–143. doi:10.7872/crym.v32.iss2.2011.135. 
  59. Ryvarden L. (1987). "New and noteworthy polypores from tropical America". Mycotaxon 28 (2): 525–41 (see p. 532). http://www.cybertruffle.org.uk/cyberliber/59575/0028/002/0532.htm. 
  60. Karsten, P.A. (1890). "Fragmenta mycologica XXXI." (in la). Hedwigia 29: 270–273. https://biodiversitylibrary.org/page/475306. 
  61. Dhingra, G.S.; Singh, Avneet P. (2008). "Validation of Repetobasidiopsis and Trimitiella (Basidiomycetes)". Mycotaxon 105: 421–422. http://www.cybertruffle.org.uk/cyberliber/59575/0105/0421.htm. 
  62. Westphalen, Mauro C.; Rajchenberg, Mario; Tomšovský, Michal; Gugliotta, Adriana M. (2016). "Extensive characterization of the new genus Rickiopora (Polyporales)". Fungal Biology 120 (8): 1002–1009. doi:10.1016/j.funbio.2016.05.001. PMID 27521631. 
  63. "Taiwanofungus, a polypore new genus" (in zh). Fungal Science 19 (3–4): 109–116. 2004. 


Wikidata ☰ Q1343309 entry