Biology:Phylum

From HandWiki
Short description: High level taxonomic rank for organisms sharing a similar body plan


In biology, a phylum (/ˈfləm/; pl.: phyla) is a level of classification or taxonomic rank below kingdom and above class. Traditionally, in botany the term division has been used instead of phylum, although the International Code of Nomenclature for algae, fungi, and plants accepts the terms as equivalent.[1][2][3] Depending on definitions, the animal kingdom Animalia contains about 31 phyla, the plant kingdom Plantae contains about 14 phyla, and the fungus kingdom Fungi contains about 8 phyla. Current research in phylogenetics is uncovering the relationships among phyla within larger clades like Ecdysozoa and Embryophyta.

General description

The term phylum was coined in 1866 by Ernst Haeckel from the Greek phylon (φῦλον, "race, stock"), related to phyle (φυλή, "tribe, clan").[4][5] Haeckel noted that species constantly evolved into new species that seemed to retain few consistent features among themselves and therefore few features that distinguished them as a group ("a self-contained unity"): "perhaps such a real and completely self-contained unity is the aggregate of all species which have gradually evolved from one and the same common original form, as, for example, all vertebrates. We name this aggregate [a] Stamm [i.e., stock] (Phylon)."[lower-alpha 1] In plant taxonomy, August W. Eichler (1883) classified plants into five groups named divisions, a term that remains in use today for groups of plants, algae and fungi.[1][6] The definitions of zoological phyla have changed from their origins in the six Linnaean classes and the four embranchements of Georges Cuvier.[7]

Informally, phyla can be thought of as groupings of organisms based on general specialization of body plan.[8] At its most basic, a phylum can be defined in two ways: as a group of organisms with a certain degree of morphological or developmental similarity (the phenetic definition), or a group of organisms with a certain degree of evolutionary relatedness (the phylogenetic definition).[9] Attempting to define a level of the Linnean hierarchy without referring to (evolutionary) relatedness is unsatisfactory, but a phenetic definition is useful when addressing questions of a morphological nature—such as how successful different body plans were.[citation needed]

Definition based on genetic relation

The most important objective measure in the above definitions is the "certain degree" that defines how different organisms need to be members of different phyla. The minimal requirement is that all organisms in a phylum should be clearly more closely related to one another than to any other group.[9] Even this is problematic because the requirement depends on knowledge of organisms' relationships: as more data become available, particularly from molecular studies, we are better able to determine the relationships between groups. So phyla can be merged or split if it becomes apparent that they are related to one another or not. For example, the bearded worms were described as a new phylum (the Pogonophora) in the middle of the 20th century, but molecular work almost half a century later found them to be a group of annelids, so the phyla were merged (the bearded worms are now an annelid family).[10] On the other hand, the highly parasitic phylum Mesozoa was divided into two phyla (Orthonectida and Rhombozoa) when it was discovered the Orthonectida are probably deuterostomes and the Rhombozoa protostomes.[11]

This changeability of phyla has led some biologists to call for the concept of a phylum to be abandoned in favour of placing taxa in clades without any formal ranking of group size.[9]

Definition based on body plan

A definition of a phylum based on body plan has been proposed by paleontologists Graham Budd and Sören Jensen (as Haeckel had done a century earlier). The definition was posited because extinct organisms are hardest to classify: they can be offshoots that diverged from a phylum's line before the characters that define the modern phylum were all acquired. By Budd and Jensen's definition, a phylum is defined by a set of characters shared by all its living representatives.

This approach brings some small problems—for instance, ancestral characters common to most members of a phylum may have been lost by some members. Also, this definition is based on an arbitrary point of time: the present. However, as it is character based, it is easy to apply to the fossil record. A greater problem is that it relies on a subjective decision about which groups of organisms should be considered as phyla.

The approach is useful because it makes it easy to classify extinct organisms as "stem groups" to the phyla with which they bear the most resemblance, based only on the taxonomically important similarities.[9] However, proving that a fossil belongs to the crown group of a phylum is difficult, as it must display a character unique to a sub-set of the crown group.[9] Furthermore, organisms in the stem group of a phylum can possess the "body plan" of the phylum without all the characteristics necessary to fall within it. This weakens the idea that each of the phyla represents a distinct body plan.[12]

A classification using this definition may be strongly affected by the chance survival of rare groups, which can make a phylum much more diverse than it would be otherwise.[13]

Known phyla

Animals

Main page: Biology:Animal

Total numbers are estimates; figures from different authors vary wildly, not least because some are based on described species,[14] some on extrapolations to numbers of undescribed species. For instance, around 25,000–27,000 species of nematodes have been described, while published estimates of the total number of nematode species include 10,000–20,000; 500,000; 10 million; and 100 million.[15]

Protostome Bilateria Nephrozoa
Deuterostome
Basal/disputed Non-Bilateria
Vendobionta
Parazoa
Others
Phylum Meaning Common name Distinguishing characteristic Taxa described
Acanthocephala Thorn head Acanthocephalans, thorny-headed worms, spiny-headed worms Worm with a proboscis armed with hooks 1420
Annelida title = Kingdoms and Domains | publisher = Academic Press | edition = 4th corrected | date = 2009 | location = London | isbn = 9780123736215 | url=https://books.google.com/books?id=9IWaqAOGyt4C}}</ref>:306 Segmented worms Multiple circular segments 22,000+ extant
Agmata Fragmented Agmates Calcareous conical shells 5 species, extinct
Archaeocyatha Ancient cups Archaeocyathids An extinct taxon of sponge-grade, reef-building organisms living in warm tropical and subtropical waters during the Early Cambrian. 3 known classes (Extinct)
Arthropoda Jointed foot Arthropods Segmented bodies and jointed limbs, with Chitin exoskeleton 1,250,000+ extant;[14] 20,000+ extinct
Brachiopoda Arm foot[16]:336 Lampshells[16]:336 Lophophore and pedicle 300–500 extant; 12,000+ extinct
Bryozoa (Ectoprocta) Moss animals Moss animals, sea mats, ectoprocts[16]:332 Lophophore, no pedicle, ciliated tentacles, anus outside ring of cilia 6,000 extant[14]
Chaetognatha Longhair jaw Arrow worms[16]:342 Chitinous spines either side of head, fins approx. 100 extant
Chordata With a cord Chordates Hollow dorsal nerve cord, notochord, pharyngeal slits, endostyle, post-anal tail approx. 55,000+[14]
Cnidaria Stinging nettle Cnidarians Nematocysts (stinging cells) approx. 16,000[14]
Ctenophora Comb bearer Comb jellies[16]:256 Eight "comb rows" of fused cilia approx. 100–150 extant
Cycliophora Wheel carrying Symbion Circular mouth surrounded by small cilia, sac-like bodies 3+
Echinodermata Spiny skin Echinoderms[16]:348 Fivefold radial symmetry in living forms, mesodermal calcified spines approx. 7,500 extant;[14] approx. 13,000 extinct
Entoprocta Inside anus[16]:292 Goblet worms Anus inside ring of cilia approx. 150
Gastrotricha Hairy stomach[16]:288 Gastrotrich worms Two terminal adhesive tubes approx. 690
Gnathostomulida Jaw orifice Jaw worms[16]:260 Tiny worms related to rotifers with no body cavity approx. 100
Hemichordata Half cord[16]:344 Acorn worms, hemichordates Stomochord in collar, pharyngeal slits approx. 130 extant
Kinorhyncha Motion snout Mud dragons Eleven segments, each with a dorsal plate approx. 150
Loricifera Armour bearer Brush heads Umbrella-like scales at each end approx. 122
Micrognathozoa Tiny jaw animals None Accordion-like extensible thorax 1
Mollusca Soft[16]:320 Mollusks / molluscs Muscular foot and mantle round shell 85,000+ extant;[14] 80,000+ extinct[17]
Monoblastozoa
(Nomen inquirendum)
None distinct anterior/posterior parts and being densely ciliated, especially around the "mouth" and "anus". 1
Nematoda Thread like Round worms, thread worms[16]:274 Round cross section, keratin cuticle 25,000[14]
Nematomorpha Thread form[16]:276 Horsehair worms, Gordian worms[16]:276 Long, thin parasitic worms closely related to nematodes approx. 320
Nemertea A sea nymph[16]:270 Ribbon worms, rhynchocoela[16]:270 Unsegmented worms, with a proboscis housed in a cavity derived from the coelom called the rhynchocoel approx. 1,200
Onychophora Claw bearer Velvet worms[16]:328 Worm-like animal with legs tipped by chitinous claws approx. 200 extant
Orthonectida Orthonectid Parasitic, microscopic, simple, wormlike organisms 20
Petalonamae Shaped like leaves None An extinct phylum from the Ediacaran. They are bottom-dwelling and immobile, shaped like leaves (frondomorphs), feathers or spindles. 3 classes, extinct
Phoronida Zeus's mistress Horseshoe worms U-shaped gut 11
Placozoa Plate animals Trichoplaxes[16]:242 Differentiated top and bottom surfaces, two ciliated cell layers, amoeboid fiber cells in between 4+
Platyhelminthes Flat worm[16]:262 Flatworms[16]:262 Flattened worms with no body cavity. Many are parasitic. approx. 29,500[14]
Porifera Pore bearer Sponges[16]:246 Perforated interior wall, simplest of all known animals 10,800 extant[14]
Priapulida Little Priapus Penis worms Penis-shaped worms approx. 20
Proarticulata Before articulates Proarticulates An extinct group of mattress-like organisms that display "glide symmetry." Found during the Ediacaran. 3 classes, extinct
Rhombozoa (Dicyemida) Lozenge animal Rhombozoans[16]:264 Single anteroposterior axial celled endoparasites, surrounded by ciliated cells 100+
Rotifera Wheel bearer Rotifers[16]:282 Anterior crown of cilia approx. 2,000[14]
Saccorhytida Saccus : "pocket" and "wrinkle" None Saccorhytus is only about 1 mm (1.3 mm) in size and is characterized by a spherical or hemispherical body with a prominent mouth. Its body is covered by a thick but flexible cuticle. It has a nodule above its mouth. Around its body are 8 openings in a truncated cone with radial folds. Considered to be a deuterostome[18] or an early ecdysozoan.[19] 1 species, extinct
Tardigrada Slow step Water bears, moss piglets Microscopic relatives of the arthropods, with a four segmented body and head 1,000
Trilobozoa Three-lobed animal Trilobozoan A taxon of mostly discoidal organisms exhibiting tricentric symmetry. All are Ediacaran-aged 18 genera, extinct
Vetulicolia Ancient dweller Vetulicolian Might possibly be a subphylum of the chordates. Their body consists of two parts: a large front part and covered with a large "mouth" and a hundred round objects on each side that have been interpreted as gills or openings near the pharynx. Their posterior pharynx consists of 7 segments. 15 species, extinct
Xenacoelomorpha Strange hollow form Subphylum Acoelomorpha and xenoturbellida Small, simple animals. Bilaterian, but lacking typical bilaterian structures such as gut cavities, anuses, and circulatory systems[20] 400+
Total: 40 1,525,000[14]

Plants

Main page: Biology:Plant

The kingdom Plantae is defined in various ways by different biologists (see Current definitions of Plantae). All definitions include the living embryophytes (land plants), to which may be added the two green algae divisions, Chlorophyta and Charophyta, to form the clade Viridiplantae. The table below follows the influential (though contentious) Cavalier-Smith system in equating "Plantae" with Archaeplastida,[21] a group containing Viridiplantae and the algal Rhodophyta and Glaucophyta divisions.

The definition and classification of plants at the division level also varies from source to source, and has changed progressively in recent years. Thus some sources place horsetails in division Arthrophyta and ferns in division Monilophyta,[22] while others place them both in Monilophyta, as shown below. The division Pinophyta may be used for all gymnosperms (i.e. including cycads, ginkgos and gnetophytes),[23] or for conifers alone as below.

Since the first publication of the APG system in 1998, which proposed a classification of angiosperms up to the level of orders, many sources have preferred to treat ranks higher than orders as informal clades. Where formal ranks have been provided, the traditional divisions listed below have been reduced to a very much lower level, e.g. subclasses.[24]

Land plants Viridiplantae
Green algae
Other algae (Biliphyta)[21]
Division Meaning Common name Distinguishing characteristics Species described
Anthocerotophyta[25] Anthoceros-like plants Hornworts Horn-shaped sporophytes, no vascular system 100-300+
Bryophyta[25] Bryum-like plants, moss plants Mosses Persistent unbranched sporophytes, no vascular system approx. 12,000
Charophyta Chara-like plants Charophytes approx. 1,000
Chlorophyta (Yellow-)green plants[16]:200 Chlorophytes approx. 7,000
Cycadophyta[26] Cycas-like plants, palm-like plants Cycads Seeds, crown of compound leaves approx. 100-200
Ginkgophyta[27] Ginkgo-like plants Ginkgo, maidenhair tree Seeds not protected by fruit (single living species) only 1 extant; 50+ extinct
Glaucophyta Blue-green plants Glaucophytes 15
Gnetophyta[28] Gnetum-like plants Gnetophytes Seeds and woody vascular system with vessels approx. 70
Lycopodiophyta,[23]

Lycophyta[29]

Lycopodium-like plants

Wolf plants

Clubmosses & spikemosses Microphyll leaves, vascular system 1,290 extant
Magnoliophyta Magnolia-like plants Flowering plants, angiosperms Flowers and fruit, vascular system with vessels 300,000
Marchantiophyta,[30]

Hepatophyta[25]

Marchantia-like plants

Liver plants

Liverworts Ephemeral unbranched sporophytes, no vascular system approx. 9,000
Polypodiophyta,

Monilophyta

Polypodium-like plants
Ferns Megaphyll leaves, vascular system approx. 10,560
Picozoa Extremely small animals Picozoans, picobiliphytes, biliphytes 1
Pinophyta,[23]

Coniferophyta[31]

Pinus-like plants

Cone-bearing plant

Conifers Cones containing seeds and wood composed of tracheids 629 extant
Prasinodermophyta Prasinoderma-like plants Picozoans, picobiliphytes, biliphytes 8
Rhodophyta Rose plants Red algae Use phycobiliproteins as accessory pigments. approx. 7,000
Total: 14

Fungi

Main page: Biology:Fungi
Division Meaning Common name Distinguishing characteristics Species described
Ascomycota Bladder fungus[16]:396 Ascomycetes,[16]:396 sac fungi Tend to have fruiting bodies (ascocarp).[32] Filamentous, producing hyphae separated by septa. Can reproduce asexually.[33] 30,000
Basidiomycota Small base fungus[16]:402 Basidiomycetes,[16]:402 club fungi Bracket fungi, toadstools, smuts and rust. Sexual reproduction.[34] 31,515
Blastocladiomycota Offshoot branch fungus[35] Blastoclads Less than 200
Chytridiomycota Little cooking pot fungus[36] Chytrids Predominantly Aquatic saprotrophic or parasitic. Have a posterior flagellum. Tend to be single celled but can also be multicellular.[37][38][39] 1000+
Glomeromycota Ball of yarn fungus[16]:394 Glomeromycetes, AM fungi[16]:394 Mainly arbuscular mycorrhizae present, terrestrial with a small presence on wetlands. Reproduction is asexual but requires plant roots.[34] 284
Microsporidia Small seeds[40] Microsporans[16]:390 1400
Neocallimastigomycota New beautiful whip fungus[41] Neocallimastigomycetes Predominantly located in digestive tract of herbivorous animals. Anaerobic, terrestrial and aquatic.[42] approx. 20 [43]
Zygomycota Pair fungus[16]:392 Zygomycetes[16]:392 Most are saprobes and reproduce sexually and asexually.[42] approx. 1060
Total: 8

Phylum Microsporidia is generally included in kingdom Fungi, though its exact relations remain uncertain,[44] and it is considered a protozoan by the International Society of Protistologists[45] (see Protista, below). Molecular analysis of Zygomycota has found it to be polyphyletic (its members do not share an immediate ancestor),[46] which is considered undesirable by many biologists. Accordingly, there is a proposal to abolish the Zygomycota phylum. Its members would be divided between phylum Glomeromycota and four new subphyla incertae sedis (of uncertain placement): Entomophthoromycotina, Kickxellomycotina, Mucoromycotina, and Zoopagomycotina.[44]

Protista

Main page: Biology:Protista taxonomy

Kingdom Protista (or Protoctista) is included in the traditional five- or six-kingdom model, where it can be defined as containing all eukaryotes that are not plants, animals, or fungi.[16]:120 Protista is a paraphyletic taxon,[47] which is less acceptable to present-day biologists than in the past. Proposals have been made to divide it among several new kingdoms, such as Protozoa and Chromista in the Cavalier-Smith system.[48]

Protist taxonomy has long been unstable,[49] with different approaches and definitions resulting in many competing classification schemes. The phyla listed here are used for Chromista and Protozoa by the Catalogue of Life,[50] adapted from the system used by the International Society of Protistologists (ISP),[45] with updates from the latest (2022) publication by Cavalier-Smith.[51] Some of the descriptions are based on the 2019 revision of eukaryotes by the ISP.[52]

Harosa Chromista
Hacrobia
Sarcomastigota Protozoa
Natozoa
Malawimonada
Phylum Meaning Common name Distinguishing characteristics Example Species Image
Amoebozoa Amorphous animal Amoebas, amoebozoans Presence of pseudopodia for amoeboid movement, tubular cristae. Amoeba 2400 Amoeba proteus.jpg
Apusozoa (P) Gliding biciliates with two or three connectors between centrioles Podomonas 32 Podomonas kaiyoae C.jpg
Bigyra Two rings Stramenopiles with a double helix in ciliary transition zone Aplanochytrium Aplanonet3.jpg
Cercozoa Flagellated animal Widely diverse morphological groups (flagellates, amoebae, heliozoans...) united only by phylogeny Euglypha Euglypha sp.jpg
Choanozoa (P) Funnel animal Filose pseudopods; some with a colar of microvilli surrounding a flagellum Desmarella 125 Desmarella moniliformis.jpg
Ciliophora Cilia bearer Ciliates Presence of multiple cilia and a cytostome Paramecium 4,500 Paramecium bursaria.jpg
Cryptista Hidden Different morphological groups (Palpitomonas, cryptophytes, endoheleans...) united by phylogeny Rhodomonas Rhodomonas salina CCMP 322.jpg
Eolouka (P) Early groove[53] Biciliates with ventral feeding groove Stygiella Stygiella incarcerata.jpg
Euglenozoa True eye animal One of the two cilia inserted into an apical or subapical ciliary pocket Euglena 800 Euglenoid movement.jpg
Gyrista Ring Helical or double helix system in ciliary transition zone; contains ochrophytes and pseudofungi Diatoms 1,500+ Diatoms through the microscope.jpg
Haptista Thin microtubule-based haptonema or axopodia for feeding, complex mineralized scales Coccolithus Coccolithus pelagicus 2.jpg
Malawimonada Small free-living bicilates with two kinetosomes, one or two vanes in posterior cilium Malawimonas Malawimonasms.jpg
Metamonada Middle monads anaerobic or microaerophilic, some without mitochondria; four kinetosomes per kinetid Giardia Giardia muris trophozoite SEM 11643.jpg
Miozoa Suckling animal One-step meiosis,[54] non-tubular ciliary hairs, usually haploid Dinoflagellates 1,555+ Noctiluca scintillans varias.jpg
Opisthosporidia
(now part of fungi)
Opisthokont spores[55] Parasites with chitinous spores and extrusive host-invasion apparatus Microsporidia Fibrillanosema spore.jpg
Percolozoa Complex life cycle containing amoebae, flagellates and cysts Naegleria Naegleria fowleri lifecycle stages.JPG
Retaria Reticulopodia or axopodia, and usually various types of skeleton Foraminifera 10,000 (50,000 extinct) Ammonia tepida.jpg
Telonemia Microscopic heterotrophic organisms Telonema 7 Telonema rivulare (contrast micrography).jpg
Total: 17

The Catalogue of Life includes Rhodophyta and Glaucophyta in kingdom Plantae,[50] but other systems consider these phyla part of Protista.[56]

Bacteria

Main page: Biology:Bacterial phyla

Currently there are 40 bacterial phyla (not including "Cyanobacteria") that have been validly published according to the Bacteriological Code[57]

  1. Abditibacteriota
  2. Acidobacteriota, phenotypically diverse and mostly uncultured
  3. Actinomycetota, High-G+C Gram positive species
  4. Aquificota, deep-branching
  5. Armatimonadota
  6. Atribacterota
  7. Bacillota, Low-G+C Gram positive species, such as the spore-formers Bacilli (aerobic) and Clostridia (anaerobic)
  8. Bacteroidota
  9. Balneolota
  10. Bdellovibrionota
  11. Caldisericota, formerly candidate division OP5, Caldisericum exile is the sole representative
  12. Calditrichota
  13. Campylobacterota
  14. Chlamydiota
  15. Chlorobiota, green sulphur bacteria
  16. Chloroflexota, green non-sulphur bacteria
  17. Chrysiogenota, only 3 genera (Chrysiogenes arsenatis, Desulfurispira natronophila, Desulfurispirillum alkaliphilum)
  18. Coprothermobacterota
  19. Deferribacterota
  20. Deinococcota, Deinococcus radiodurans and Thermus aquaticus are "commonly known" species of this phyla
  21. Dictyoglomota
  22. Elusimicrobiota, formerly candidate division Thermite Group 1
  23. Fibrobacterota
  24. Fusobacteriota
  25. Gemmatimonadota
  26. Ignavibacteriota
  27. Kiritimatiellota
  28. Lentisphaerota, formerly clade VadinBE97
  29. Mycoplasmatota, notable genus: Mycoplasma
  30. Myxococcota
  31. Nitrospinota
  32. Nitrospirota
  33. Planctomycetota
  34. Pseudomonadota, the most well-known phylum, containing species such as Escherichia coli or Pseudomonas aeruginosa
  35. Rhodothermota
  36. Spirochaetota, species include Borrelia burgdorferi, which causes Lyme disease
  37. Synergistota
  38. Thermodesulfobacteriota
  39. Thermomicrobiota
  40. Thermotogota, deep-branching
  41. Verrucomicrobiota

Archaea

Main page: Biology:Archaea

Currently there are 2 phyla that have been validly published according to the Bacteriological Code[57]

  1. Nitrososphaerota
  2. Thermoproteota, second most common archaeal phylum

Other phyla that have been proposed, but not validly named, include:

  1. "Euryarchaeota", most common archaeal phylum
  2. "Korarchaeota"
  3. "Nanoarchaeota", ultra-small symbiotes, single known species

See also

Notes

  1. "Wohl aber ist eine solche reale und vollkommen abgeschlossene Einheit die Summe aller Species, welche aus einer und derselben gemeinschaftlichen Stammform allmählig sich entwickelt haben, wie z. B. alle Wirbelthiere. Diese Summe nennen wir Stamm (Phylon)."

References

  1. 1.0 1.1 McNeill, J., ed (2012). International Code of Nomenclature for algae, fungi, and plants (Melbourne Code), Adopted by the Eighteenth International Botanical Congress Melbourne, Australia, July 2011 (electronic ed.). International Association for Plant Taxonomy. http://www.iapt-taxon.org/nomen/main.php?page=art3. Retrieved 2017-05-14. 
  2. "Life sciences". The American Heritage New Dictionary of Cultural Literacy (third ed.). Houghton Mifflin Company. 2005. http://dictionary.reference.com/browse/phylum. Retrieved 2008-10-04. "Phyla in the plant kingdom are frequently called divisions." 
  3. Berg, Linda R. (2 March 2007). Introductory Botany: Plants, People, and the Environment (2 ed.). Cengage Learning. p. 15. ISBN 9780534466695. https://books.google.com/books?id=I71WWH9ZmfsC&pg=PA15. Retrieved 2012-07-23. 
  4. Valentine 2004, p. 8.
  5. Haeckel, Ernst (1866) (in de). Generelle Morphologie der Organismen. 1. Berlin, (Germany): G. Reimer. pp. 28–29. https://archive.org/details/generellemorphol01haec. 
  6. Naik, V. N. (1984). Taxonomy of Angiosperms. Tata McGraw-Hill. p. 27. ISBN 9780074517888. https://books.google.com/books?id=GanmtXAyU0gC. 
  7. "Defining phyla: evolutionary pathways to metazoan body plans". Evolution and Development 3: 432–442. 2001. http://si-pddr.si.edu/jspui/bitstream/10088/7403/1/Collins_Valentine_EvDev2001.pdf. 
  8. Valentine, James W. (2004). On the Origin of Phyla. Chicago: University of Chicago Press. p. 7. ISBN 978-0-226-84548-7. "Classifications of organisms in hierarchical systems were in use by the seventeenth and eighteenth centuries. Usually organisms were grouped according to their morphological similarities as perceived by those early workers, and those groups were then grouped according to their similarities, and so on, to form a hierarchy." 
  9. 9.0 9.1 9.2 9.3 9.4 Budd, G. E.; Jensen, S. (May 2000). "A critical reappraisal of the fossil record of the bilaterian phyla". Biological Reviews 75 (2): 253–295. doi:10.1111/j.1469-185X.1999.tb00046.x. PMID 10881389. http://www.journals.cambridge.org/abstract_S000632310000548X. 
  10. Rouse, G. W. (2001). "A cladistic analysis of Siboglinidae Caullery, 1914 (Polychaeta, Annelida): formerly the phyla Pogonophora and Vestimentifera". Zoological Journal of the Linnean Society 132 (1): 55–80. doi:10.1006/zjls.2000.0263. 
  11. "Origin of the Mesozoa inferred from 18S rRNA gene sequences". Molecular Biology and Evolution 13 (8): 1128–32. October 1996. doi:10.1093/oxfordjournals.molbev.a025675. PMID 8865666. 
  12. Budd, G. E. (September 1998). "Arthropod body-plan evolution in the Cambrian with an example from anomalocaridid muscle". Lethaia 31 (3): 197–210. doi:10.1111/j.1502-3931.1998.tb00508.x. 
  13. Briggs, D. E. G.; Fortey, R. A. (2005). "Wonderful strife: systematics, stem groups, and the phylogenetic signal of the Cambrian radiation". Paleobiology 31 (2 (Suppl)): 94–112. doi:10.1666/0094-8373(2005)031[0094:WSSSGA2.0.CO;2]. 
  14. 14.00 14.01 14.02 14.03 14.04 14.05 14.06 14.07 14.08 14.09 14.10 14.11 Zhang, Zhi-Qiang (2013-08-30). "Animal biodiversity: An update of classification and diversity in 2013. In: Zhang, Z.-Q. (Ed.) Animal Biodiversity: An Outline of Higher-level Classification and Survey of Taxonomic Richness (Addenda 2013)". Zootaxa 3703 (1): 5. doi:10.11646/zootaxa.3703.1.3. https://biotaxa.org/Zootaxa/article/download/zootaxa.3703.1.3/4273. 
  15. Felder, Darryl L.; Camp, David K. (2009). Gulf of Mexico Origin, Waters, and Biota: Biodiversity. Texas A&M University Press. p. 1111. ISBN 978-1-60344-269-5. https://books.google.com/books?id=CphA8hiwaFIC&pg=RA1-PA1111. 
  16. 16.00 16.01 16.02 16.03 16.04 16.05 16.06 16.07 16.08 16.09 16.10 16.11 16.12 16.13 16.14 16.15 16.16 16.17 16.18 16.19 16.20 16.21 16.22 16.23 16.24 16.25 16.26 16.27 16.28 16.29 16.30 16.31 16.32 16.33 Cite error: Invalid <ref> tag; no text was provided for refs named K&D
  17. Feldkamp, S. (2002) Modern Biology. Holt, Rinehart, and Winston, USA. (pp. 725)
  18. Han, Jian; Morris, Simon Conway; Ou, Qiang; Shu, Degan; Huang, Hai (2017). "Meiofaunal deuterostomes from the basal Cambrian of Shaanxi (China)" (in en). Nature 542 (7640): 228–231. doi:10.1038/nature21072. ISSN 1476-4687. PMID 28135722. Bibcode2017Natur.542..228H. https://www.nature.com/articles/nature21072. 
  19. Liu, Yunhuan; Carlisle, Emily; Zhang, Huaqiao; Yang, Ben; Steiner, Michael; Shao, Tiequan; Duan, Baichuan; Marone, Federica et al. (2022-08-17). "Saccorhytus is an early ecdysozoan and not the earliest deuterostome" (in en). Nature 609 (7927): 541–546. doi:10.1038/s41586-022-05107-z. ISSN 1476-4687. PMID 35978194. Bibcode2022Natur.609..541L. https://www.nature.com/articles/s41586-022-05107-z. 
  20. Cannon, J.T.; Vellutini, B.C.; Smith, J.; Ronquist, F.; Jondelius, U.; Hejnol, A. (4 February 2016). "Xenacoelomorpha is the sister group to Nephrozoa". Nature 530 (7588): 89–93. doi:10.1038/nature16520. PMID 26842059. Bibcode2016Natur.530...89C. http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-1844. 
  21. 21.0 21.1 Cavalier-Smith, Thomas (22 June 2004). "Only Six Kingdoms of Life". Proceedings: Biological Sciences 271 (1545): 1251–1262. doi:10.1098/rspb.2004.2705. PMID 15306349. 
  22. Mauseth 2012, pp. 514, 517.
  23. 23.0 23.1 23.2 Cronquist, A.; A. Takhtajan; W. Zimmermann (April 1966). "On the higher taxa of Embryobionta". Taxon 15 (4): 129–134. doi:10.2307/1217531. 
  24. Chase, Mark W.; Reveal, James L. (October 2009), "A phylogenetic classification of the land plants to accompany APG III", Botanical Journal of the Linnean Society 161 (2): 122–127, doi:10.1111/j.1095-8339.2009.01002.x 
  25. 25.0 25.1 25.2 Mauseth, James D. (2012). Botany : An Introduction to Plant Biology (5th ed.). Sudbury, MA: Jones and Bartlett Learning. ISBN 978-1-4496-6580-7.  p. 489
  26. Mauseth 2012, p. 540.
  27. Mauseth 2012, p. 542.
  28. Mauseth 2012, p. 543.
  29. Mauseth 2012, p. 509.
  30. Crandall-Stotler, Barbara; Stotler, Raymond E. (2000). "Morphology and classification of the Marchantiophyta". Bryophyte Biology. Cambridge: Cambridge University Press. p. 21. ISBN 978-0-521-66097-6. 
  31. Mauseth 2012, p. 535.
  32. Wyatt, T.; Wösten, H.; Dijksterhuis, J. (2013). "Advances in Applied Microbiology Chapter 2 - Fungal Spores for Dispersion in Space and Time". Advances in Applied Microbiology 85: 43–91. doi:10.1016/B978-0-12-407672-3.00002-2. PMID 23942148. 
  33. "Classifications of Fungi | Boundless Biology". https://courses.lumenlearning.com/boundless-biology/chapter/classifications-of-fungi/. 
  34. 34.0 34.1 "Archaeal Genetics | Boundless Microbiology". https://courses.lumenlearning.com/boundless-microbiology/chapter/archaeal-genetics/. 
  35. Holt, Jack R.; Iudica, Carlos A. (1 October 2016). "Blastocladiomycota". Susquehanna University. http://comenius.susqu.edu/biol/202/fungi/blastocladiomycota/default.htm. 
  36. Holt, Jack R.; Iudica, Carlos A. (9 January 2014). "Chytridiomycota". Susquehanna University. http://comenius.susqu.edu/biol/202/fungi/chytridiomycota/default.htm. 
  37. "Chytridiomycota | phylum of fungi" (in en). https://www.britannica.com/science/Chytridiomycota. 
  38. McConnaughey, M (2014). Physical Chemical Properties of Fungi. doi:10.1016/B978-0-12-801238-3.05231-4. ISBN 9780128012383. 
  39. Taylor, Thomas; Krings, Michael; Taylor, Edith (2015). "Fossil Fungi Chapter 4 - Chytridiomycota". Fossil Fungi: 41–67. doi:10.1016/b978-0-12-387731-4.00004-9. 
  40. Holt, Jack R.; Iudica, Carlos A. (12 March 2013). "Microsporidia". Susquehanna University. http://comenius.susqu.edu/biol/202/fungi/microsporidia/default.htm. 
  41. Holt, Jack R.; Iudica, Carlos A. (23 April 2013). "Neocallimastigomycota". Susquehanna University. http://comenius.susqu.edu/biol/202/fungi/neocallimastigomycota/default.htm. 
  42. 42.0 42.1 "Types of Fungi" (in en-US). 22 May 2009. https://biologywise.com/types-of-fungi. 
  43. Wang, Xuewei; Liu, Xingzhong; Groenewald, Johannes Z. (2017). "Phylogeny of anaerobic fungi (phylum Neocallimastigomycota), with contributions from yak in China". Antonie van Leeuwenhoek 110 (1): 87–103. doi:10.1007/s10482-016-0779-1. PMID 27734254. 
  44. 44.0 44.1 "A higher-level phylogenetic classification of the Fungi". Mycological Research 111 (Pt 5): 509–47. May 2007. doi:10.1016/j.mycres.2007.03.004. PMID 17572334. http://www.clarku.edu/faculty/dhibbett/AFTOL/documents/AFTOL%20class%20mss%2023,%2024/AFTOL%20CLASS%20MS%20resub.pdf. 
  45. 45.0 45.1 Ruggiero, Michael A.; Gordon, Dennis P.; Orrell, Thomas M. et al. (29 April 2015). "A Higher Level Classification of All Living Organisms". PLOS ONE 10 (6): e0119248. doi:10.1371/journal.pone.0119248. PMID 25923521. Bibcode2015PLoSO..1019248R. 
  46. White, Merlin M.; James, Timothy Y.; O'Donnell, Kerry et al. (Nov–Dec 2006). "Phylogeny of the Zygomycota Based on Nuclear Ribosomal Sequence Data". Mycologia 98 (6): 872–884. doi:10.1080/15572536.2006.11832617. PMID 17486964. 
  47. Hagen, Joel B. (January 2012). "Five Kingdoms, More or Less: Robert Whittaker and the Broad Classification of Organisms". BioScience 62 (1): 67–74. doi:10.1525/bio.2012.62.1.11. 
  48. Blackwell, Will H.; Powell, Martha J. (June 1999). "Reconciling Kingdoms with Codes of Nomenclature: Is It Necessary?". Systematic Biology 48 (2): 406–412. doi:10.1080/106351599260382. PMID 12066717. 
  49. Davis, R. A. (19 March 2012). "Kingdom PROTISTA". http://faculty.msj.edu/davisr/potpouri/protista.htm. 
  50. 50.0 50.1 "Taxonomic tree". 23 December 2016. http://www.catalogueoflife.org/col/browse/tree?de3fa845167fa2ccdac6ddcb6e8d9a28. 
  51. "Ciliary transition zone evolution and the root of the eukaryote tree: implications for opisthokont origin and classification of kingdoms Protozoa, Plantae, and Fungi". Protoplasma 259: 487–593. 2022. doi:10.1007/s00709-021-01665-7. 
  52. "Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes". Journal of Eukaryotic Microbiology 66 (1): 4–119. 2019. doi:10.1111/jeu.12691. PMID 30257078. 
  53. "Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa". European Journal of Protistology 49 (2): 115–178. 2013. doi:10.1016/j.ejop.2012.06.001. PMID 23085100. 
  54. "The Origin of Eukaryote and Archaebacterial Cells". Annals of the New York Academy of Sciences 503: 17–54. 1987. doi:10.1111/j.1749-6632.1987.tb40596.x. 
  55. Karpov, Sergey; Mamkaeva, Maria A.; Aleoshin, Vladimir; Nassonova, Elena; Lilje, Osu; Gleason, Frank H. (2014-01-01). "Morphology, phylogeny, and ecology of the aphelids (Aphelidea, Opisthokonta) and proposal for the new superphylum Opisthosporidia". Frontiers in Microbiology 5: 112. doi:10.3389/fmicb.2014.00112. PMID 24734027. 
  56. Corliss, John O. (1984). "The Kingdom Protista and its 45 Phyla". BioSystems 17 (2): 87–176. doi:10.1016/0303-2647(84)90003-0. PMID 6395918. 
  57. 57.0 57.1 "Names of phyla". List of Prokaryotic names with Standing in Nomenclature (LPSN). https://lpsn.dsmz.de/text/names-of-phyla. 

External links