Clarkson's inequalities
From HandWiki
In mathematics, Clarkson's inequalities, named after James A. Clarkson, are results in the theory of Lp spaces. They give bounds for the Lp-norms of the sum and difference of two measurable functions in Lp in terms of the Lp-norms of those functions individually.
Statement of the inequalities
Let (X, Σ, μ) be a measure space; let f, g : X → R be measurable functions in Lp. Then, for 2 ≤ p < +∞,
- [math]\displaystyle{ \left\| \frac{f + g}{2} \right\|_{L^p}^p + \left\| \frac{f - g}{2} \right\|_{L^p}^p \le \frac{1}{2} \left( \| f \|_{L^p}^p + \| g \|_{L^p}^p \right). }[/math]
For 1 < p < 2,
- [math]\displaystyle{ \left\| \frac{f + g}{2} \right\|_{L^p}^q + \left\| \frac{f - g}{2} \right\|_{L^p}^q \le \left( \frac{1}{2} \| f \|_{L^p}^p +\frac{1}{2} \| g \|_{L^p}^p \right)^\frac{q}{p}, }[/math]
where
- [math]\displaystyle{ \frac1{p} + \frac1{q} = 1, }[/math]
i.e., q = p ⁄ (p − 1).
The case p ≥ 2 is somewhat easier to prove, being a simple application of the triangle inequality and the convexity of
- [math]\displaystyle{ x \mapsto x^p. }[/math]
References
- "Uniformly convex spaces", Transactions of the American Mathematical Society 40 (3): 396–414, 1936, doi:10.2307/1989630.
- "On the uniform convexity of Lp and ℓp", Arkiv för Matematik 3 (3): 239–244, 1956, doi:10.1007/BF02589410, Bibcode: 1956ArM.....3..239H.
- "On Clarkson's inequalities", Communications on Pure and Applied Mathematics 23 (4): 603–607, 1970, doi:10.1002/cpa.3160230405.
External links
Original source: https://en.wikipedia.org/wiki/Clarkson's inequalities.
Read more |