Dextroscope

From HandWiki
Short description: Virtual Reality environment

The Dextroscope is a medical equipment system that creates a virtual reality (VR) environment in which surgeons can plan neurosurgical and other surgical procedures.[1]

The Dextroscope is designed to show a patient's 3D anatomical relationships and pathology in great detail. Although its main purpose is for planning surgery, the dextroscope has also proven useful in research in cardiology,[2][3] radiology and medical education.[4]

History

The Dextroscope started as a research project in the mid-90s at the Kent Ridge Digital Labs research institute (part of Singapore's Agency for Science, Technology and Research (A*STAR)). It was initially named the Virtual Workbench[5] and underwent commercialization in 2000 by the company Volume Interactions Pte Ltd with the name Dextroscope. The Dextroscope was selected in 2021 by A*STAR as one of the 30 innovations and inventions that pushed scientific boundaries, made an economic impact or improved lives over its 30 years history (A*STAR@30: 30 Innovations and Inventions Over Three Decades).

The Dextroscope was designed to be a practical variation of Virtual Reality which introduced an alternative to the prevalent trend of full immersion of the 1990s. Instead of immersing the whole user into a virtual reality, it just immersed the neurosurgeon into the patient data.

Description

The Dextroscope allows its user to interact intuitively with a Virtual Patient. This Virtual Patient is composed of computer-generated 3D multi-modal images obtained from any DICOM tomographic data including CT, MRI, MRA, MRV, functional MRI and CTA, PET, SPECT and Tractography. The Dextroscope can work with any multi-modality combination, supporting polygonal meshes as well.[6]

The surgeon sits at the Dextroscope 3D interaction console and manipulates the Virtual Patient using both hands, similar to real life. Using stereoscopic visualisations displayed via a mirror, the surgeon sees the Virtual Patient floating behind the mirror but within easy reach of the hands. The surgeon uses flexible 3D hand movements to rotate and manipulate the object of interest. The Dextroscope allows virtual segmentation of organs and structures, making accurate 3D measurements, etc.

The Dextroscope.

In one hand the surgeon holds a handle with a switch that, when pressed, allows the 3D image to be moved freely as if it were an object held in real space. The other hand holds a pencil shaped stylus that the surgeon uses to select tools from a virtual control panel and perform detailed manipulations on the 3D image.

The surgeon does not see the stylus, handle or his/her hands directly, as they are hidden behind the surface of the mirror. Instead he/she sees a virtual handle and stylus calibrated to appear in exactly the same position as the real handle and stylus. The virtual handle can serve as a drill tool, measurement tool, cutter, etc.[5]

The Dextroscope allows surgeons to interact with and manipulate the Virtual Patient, such as simulating inter-operative viewpoints or the removal of bone and soft tissue. The surgeon is able to reach inside and manipulate the image interior.

Virtual tools

The Dextroscope provides virtual tools to manipulate the 3D image. The surgeon can use them within the virtual person to extract surgically relevant structures like the cortex or a tumor ,[7] extract blood vessels,[8] or to adjust the color and transparency of displayed structures to see deep inside the patient. The surgeon can simulated the removal of bone using a simulated skull drilling tool.

Typical structures that can be segmented are tumors, blood vessels, aneurysms, parts of the skull base, and organs. Segmentation is done either automatically (when the structures are demarcated clearly by their outstanding image intensity - such as the cortex) or through user interaction (using for example an outlining tool to define the extent of the structure manually).

A virtual ‘pick’ tool allows the user to pick a segmented object and uncouple it from its surroundings for closer inspection. A measurement tool provides accurate measurement of straight and curving 3D structures such as the scalp, and measure angles, such as those between vessels or bony structures (for example, when planning the insertion of a screw into the spine).

Neurosurgery planning – case studies and evaluations

The use of the Dextroscope has been reported for several neurosurgical clinical scenarios;[1] [9] [10]

Screen Capture from the Dextroscope. This image shows a moment during the planning of a typical neurosurgical procedure involving an MRI, DTI, TMS data modalities.

- cerebral arteriovenous malformations[11] [12]

- aneurysms[13] [14] [15]

- cranial nerve decompression (in cases of trigeminal neuralgia and hemifacial spasm)[16] [17] [18]

- meningiomas (convexity, falcine or parasagittal)[19] [20] [21]

- ependymomas or subependymomas[13] [22]

- craniopagus twin separation[23] [24]

- transnasal approaches[25] [26] [27]

- key-hole approaches[28] [29] [30]

- epilepsy[31]

- and a great variety of deep-brain and skull base tumors[32][33] (pituitary adenomas, craniopharyngiomas, arachnoid cysts, colloid cysts, cavernomas[34] ,[35] hemangioblastomas, chordomas, epidermoids, gliomas,[36] jugular schwannomas, aqueductal stenosis, stenosis of Monro foramen, hippocampal sclerosis).[13] [37] [38]

Not only brain, but also spine pathology such as cervical spine fractures, syringomyelia, and sacral nerve root neurinomas have been evaluated.[39]

For other uses of the Dextroscope in neurosurgery refer to[40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] .[52]

Other surgical specialties

The Dextroscope has been applied also outside of neurosurgery to benefit any patient presenting a surgical challenge: an anatomical or structural complexity that requires planning of the surgical (or interventional) approach, for example, ENT[53] orthopedic, trauma and cranio-facial surgery,[54][55][56][57][58][59] cardiac surgery[60] and liver resection. [61] [62]

Dextroscope and diagnostic imaging

Dextroscope is not just for surgeons – radiologists use it, too. The rapid growth in multi-modal diagnostic imaging data routinely available has increased their workload tremendously. Using the Dextroscope, radiologists can reconstruct multimodal models from high volumes of 2D slices – hence facilitating a better understanding of the 3D anatomical structures and helping with the diagnosis.

Furthermore, the Dextroscope virtual reality environment helps bridge the gap between radiology and surgery - by allowing the radiologist to easily demonstrate to surgeons important 3D structures in a way that surgeons are familiar with.
This demonstration capability makes it also useful as a base for medical educators in which to convey 3D information to students.[63] In order to reach a larger group of people in a classroom or auditorium, a version was manufactured called Dextrobeam.[64]

The Dextroscope was installed, (among other medical and research institutions) at:

Medical/research institution Main use
Hirslanden Hospital (Zurich, Switzerland) Neurosurgery
St Louis University Hospital (St Louis, USA) Neurosurgery
Stanford University Medical Center (San Francisco, USA) Neurosurgery & craniomaxillofacial Surgery
Johns Hopkins Hospital (Baltimore, USA) Radiology research
Rutgers New Jersey Medical School (Newark, USA) Neurosurgery, ENT
Hospital of the University of Pennsylvania (Philadelphia, USA) Neurosurgery & cardiovascular radiology
Weill Cornell Brain and Spine Center (New York, USA) Neurosurgery
Johannes Gutenberg University Mainz (Germany) Neurosurgery & medical education
Hospital del Mar (Barcelona, Spain) Neurosurgery
Université Catholique de Louvain, Cliniques Universitaires St-Luc (Brussels, Belgium) Neurosurgery
Istituto Neurologico C. Besta (Milan, Italy) Neurosurgery
Royal London Hospital (London, UK) Neurosurgery
Faculty of Medicine, University of Barcelona (Barcelona, Spain) Neurosurgery research & neuroanatomy
Inselpital (Bern, Switzerland) ENT
School of Medicine, University of Split (Split, Croatia) Neurophysiology research
National Neuroscience Institute (Singapore) Neurosurgery
SINAPSE Institute (Singapore) Neurosurgery research
Prince of Wales Hospital (Hong Kong) Neurosurgery & orthopedics
Hua Shan Hospital (Shanghai, China) Neurosurgery
Advanced Surgery Training Centre of the National University Hospital (Singapore) Medical education
Fujian Medical University (Fuzhou, China) Neurosurgery & maxillofacial surgery

Dextroscope in the operating room: DEX-Ray

The Dextroscope was a pre-operative planning system which created 3D patient-specific virtual models. To bring the patient date into the operating room, in particular to neurosurgery, the DEX-Ray[65] augmented reality neurosurgical navigation system was developed in 2006-2008. DEX-Ray overlaid 3D virtual patient information over a video stream obtained from a proprietary handheld tracked video probe designed by the company. This allowed image guidance by displaying co-registered planning data over the real images of the patient seen by the video camera, so that the clinician had 'see-through' visualization on the patient's head, and helped plan the craniotomy and guide during the intervention. The DEX-Ray was clinically tested at the Singapore National Neuroscience Institute (Singapore) and at the Hospital Clinic Barcelona (Spain). It was not released as a commercial product.

Commercialization

The Dextroscope and Dextrobeam were products of Volume Interactions Pte Ltd (a member of the Bracco Group), a company spun-off from the Kent Ridge Digital Labs research institute in Singapore. They received USA FDA 510(K) - class II (2002) clearance, CE Marking - class I (2002), China SFDA Registration - class II (2004) and Taiwan Registration - type P (Radiology) (2007). For a comprehensive overview of the Dextroscope refer to the Springer International Publishing book chaper.[66]

References

  1. 1.0 1.1 Kockro, R.A.; Serra, L.; Tseng-Tsai, Y.; Chan, C.; Yih-Yian, S.; Gim-Guan, C.; Lee, E.; Hoe, L.Y. et al. (2000). "Planning and simulation of neurosurgery in a virtual reality environment". Neurosurgery 46 (1): 118–135. doi:10.1097/00006123-200001000-00024. PMID 10626943. 
  2. Fu, Yingli (2010). "MRI and CT Tracking of Mesenchymal Stem Cells with Novel Perfluorinated Alginate Microcapsules". Journal of Cardiovascular Magnetic Resonance 12: O14. doi:10.1186/1532-429X-12-S1-O14. 
  3. Kraitchman, Dara L. (Sep 6, 2005). "Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction". Circulation 112 (10): 1451–1461. doi:10.1161/CIRCULATIONAHA.105.537480. PMID 16129797. 
  4. Liu, Kaijun (Sep 2013). "Anatomical education and surgical simulation based on the Chinese Visible Human: a three-dimensional virtual model of the larynx region". Anatomical Science International 88 (4): 254–8. doi:10.1007/s12565-013-0186-x. PMID 23801001. 
  5. 5.0 5.1 Poston, T.; Serra, L. (1996). "Dextrous Virtual Work.". Commun. ACM 39 (5): 37–45. doi:10.1145/229459.229464. 
  6. (in en) Meningeal Neoplasms: New Insights for the Healthcare Professional: 2011 Edition: ScholarlyBrief. ScholarlyEditions. 2012-01-09. ISBN 978-1-4649-0692-3. https://books.google.com/books?id=3KHAMPpP-Z0C&q=Dextroscope&pg=PT21. 
  7. Chia, W.K.; Serra, L. (2006). "Contouring in 2D while viewing stereoscopic 3D volumes". Stud Health Technol Inform 119: 93–95. PMID 16404022. 
  8. Serra, Luis; Hern, Ng; Choon, Chua Beng; Poston, Timothy (1997). "Interactive vessel tracing in volume data". Proceedings of the 1997 symposium on Interactive 3D graphics - SI3D '97. pp. 131–ff. doi:10.1145/253284.253320. ISBN 0897918843. 
  9. Matis, G.K.; Silva, D.O. de A.; Chrysou, O.I.; Karanikas, M.; Pelidou, S.-H.; Birbilis, T.A.; Bernardo, A.; Stieg, P. (2013). "Virtual reality implementation in neurosurgical practice: the"can't take my eyes off you" effect". Turk Neurosurg 23 (5): 690–691. PMID 24101322. 
  10. Ferroli, P.; Tringali, G.; Acerbi, F.; Aquino, D.; Franzini, A.; Broggi, G. (2010). "Brain surgery in a stereoscopic virtual reality environment: a single institution's experience with 100 cases". Neurosurgery 67 (3 Suppl Operative): 79–84. doi:10.1227/01.NEU.0000383133.01993.96. PMID 20679945. 
  11. Ng, I; Hwang, PY; Kumar, D; Lee, CK; Kockro, RA; Sitoh, YY (2009). "Surgical planning for microsurgical excision of cerebral arteriovenous malformations using virtual reality technology". Acta Neurochir (Wien) 151 (5): 453–63; discussion 463. doi:10.1007/s00701-009-0278-5. PMID 19319471. 
  12. Wong, GK; Zhu, CX; Ahuja, AT; Poon, WS (2009). "Stereoscopic virtual reality simulation for microsurgical excision of cerebral arteriovenous malformation: case illustrations". Surg Neurol 72 (1): 69–72. doi:10.1016/j.surneu.2008.01.049. PMID 19559930. 
  13. 13.0 13.1 13.2 Stadie, AT; Kockro, RA; Reisch, R; Tropine, A; Boor, S; Stoeter, P; Perneczky, A (2008). "Virtual reality system for planning minimally invasive neurosurgery. Technical note". J Neurosurg 108 (2): 382–394. doi:10.3171/jns/2008/108/2/0382. PMID 18240940. 
  14. Wong GK, Zhu CX, Ahuja AT, Poon WS: Craniotomy and clipping of intracranial aneurysm in a stereoscopic virtual reality environment" Neurosurgery 2007; 61: 564-568
  15. Guo, Y.; Ke, Y.; Zhang, S.; Wang, Q.; Duan, C.; Jia, H.; Zhou, L.; Xu, R. (2008). "Combined application of virtual imaging techniques and three-dimensional computed tomographic angiography in diagnosing intracranial aneurysms". Chinese Medical Journal (English Edition) 121 (24): 2521–4. PMID 19187589. 
  16. Du, ZY; Gao, X; Zhang, XL; Wang, ZQ; Tang, WJ (2010). "Preoperative evaluation of neurovascular relationships for microvascular decompression in the cerebellopontine angle in a virtual reality environment". J Neurosurg 113 (3): 479–485. doi:10.3171/2009.9.jns091012. PMID 19852542. 
  17. González Sánchez, JJ; Enseñat Nora, J; Candela Canto, S; Rumià Arboix, J; Caral Pons, LA; Oliver, D; Ferrer Rodriguez, E (2010). "New stereoscopic virtual reality system application to cranial nerve microvascular decompression". Acta Neurochir (Wien) 152 (2): 355–360. doi:10.1007/s00701-009-0569-x. PMID 19997945. 
  18. Liu, XD; Xu, QW; Che, XM; Yang, DL (2009). "Trigeminal neurinomas: Clinical features and surgical experience in 84 patients". Neurosurg Rev 32 (4): 435–444. doi:10.1007/s10143-009-0210-8. PMID 19633876. 
  19. Low, D; Lee, CK; Dip, LL; Ng, WH; Ang, BT; Ng, I (2010). "Augmented reality neurosurgical planning and navigation for surgical excision of parasagittal, falcine and convexity meningiomas". Br J Neurosurg 24 (1): 69–74. doi:10.3109/02688690903506093. PMID 20158356. 
  20. Khu, K.J.; Ng, I.; Ng, W.H. (2009). "The relationship between parasagittal and falcine meningiomas and the superficial cortical veins: a virtual reality study". Acta Neurochirurgica 151 (11): 1459–1464. doi:10.1007/s00701-009-0379-1. PMID 19424657. 
  21. Tang, H.-L.; Sun, H.-P.; Gong, Y.; Mao, Y.; Wu, J.-S.; Zhang, X.-L.; Xie, Q.; Xie, L.-Q. et al. (2012). "Preoperative surgical planning for intracranial meningioma resection by virtual reality". Chin. Med. J. 125 (11): 2057–2061. PMID 22884077. 
  22. Anil, SM; Kato, Y; Hayakawa, M; Yoshida, K; Nagahisha, S; Kanno, T (2007). "Virtual 3-Dimensional preoperative planning with the dextroscope for excision of a 4th ventricular ependymoma". Minim Invasive Neurosurg 50 (2): 65–70. doi:10.1055/s-2007-982508. PMID 17674290. 
  23. Goh, K.Y.C., 2004. Separation surgery for total vertical craniopagus twins. Child’s Nervous System 20, 567–575.
  24. "Separate Fates". 2004. http://pages.jh.edu/~jhumag/0205web/separate.html. 
  25. Wang, S.-S.; Xue, L.; Jing, J.-J.; Wang, R.-M. (2012a). "Virtual reality surgical anatomy of the sphenoid sinus and adjacent structures by the transnasal approach". J Craniomaxillofac Surg 40 (6): 494–499. doi:10.1016/j.jcms.2011.08.008. PMID 21996723. 
  26. Wang, S.-S.; Li, J.-F.; Zhang, S.-M.; Jing, J.-J.; Xue, L. (2014). "A virtual reality model of the clivus and surgical simulation via transoral or transnasal route". Int J Clin Exp Med 7 (10): 3270–3279. PMID 25419358. 
  27. Di Somma, A.; de Notaris, M.; Enseñat, J.; Alobid, I.; San Molina, J.; Berenguer, J.; Cappabianca, P.; Prats-Galino, A. (2014). "Extended Endoscopic Endonasal Approaches for Cerebral Aneurysms: Anatomical, Virtual Reality and Morphometric Study". BioMed Research International 2014: 1–9. doi:10.1155/2014/703792. PMID 24575410. 
  28. Reisch, R.; Stadie, A.; Kockro, R.; Gawish, I.; Schwandt, E.; Hopf, N. (2009). "The minimally invasive supraorbital subfrontal key-hole approach for surgical treatment of temporomesial lesions of the dominant hemisphere". Minim Invasive Neurosurg 52 (4): 163–169. doi:10.1055/s-0029-1238285. PMID 19838969. 
  29. Fischer, G.; Stadie, A.; Schwandt, E.; Gawehn, J.; Boor, S.; Marx, J.; Oertel, J. (2009). "Minimally invasive superficial temporal artery to middle cerebral artery bypass through a minicraniotomy: benefit of three-dimensional virtual reality planning using magnetic resonance angiography". Neurosurg Focus 26 (5): E20. doi:10.3171/2009.2.FOCUS0917. PMID 19408999. 
  30. Reisch, Robert; Stadie, Axel; Kockro, Ralf A.; Hopf, Nikolai (2013). "The Keyhole Concept in Neurosurgery". World Neurosurgery 79 (2): S17.e9–S17.e13. doi:10.1016/j.wneu.2012.02.024. PMID 22381839. 
  31. Serra, C.; Huppertz, H.-J.; Kockro, R.A.; Grunwald, T.; Bozinov, O.; Krayenbühl, N.; Bernays, R.-L. (2013). "Rapid and accurate anatomical localization of implanted subdural electrodes in a virtual reality environment". J Neurol Surg a Cent Eur Neurosurg 74 (3): 175–182. doi:10.1055/s-0032-1333124. PMID 23512592. 
  32. Yang, D.L.; Xu, Q.W.; Che, X.M.; Wu, J.S.; Sun, B. (2009). "Clinical evaluation and follow-up outcome of presurgical plan by Dextroscope: a prospective controlled study in patients with skull base tumors". Surgical Neurology 72 (6): 682–689. doi:10.1016/j.surneu.2009.07.040. PMID 19850330. 
  33. Wang, S.-S.; Zhang, S.-M.; Jing, J.-J. (2012b). "Stereoscopic virtual reality models for planning tumor resection in the sellar region". BMC Neurol 12: 146. doi:10.1186/1471-2377-12-146. PMID 23190528. 
  34. Chen, L.; Zhao, Y.; Zhou, L.; Zhu, W.; Pan, Z.; Mao, Y. (2011). "Surgical Strategies in Treating Brainstem Cavernous Malformations". Neurosurgery 68 (3): 609–621. doi:10.1227/NEU.0b013e3182077531. PMID 21164376. 
  35. Stadie, A.; Reisch, R.; Kockro, R.; Fischer, G.; Schwandt, E.; Boor, S.; Stoeter, P. (2009). "Minimally Invasive Cerebral Cavernoma Surgery using Keyhole Approaches – Solutions for Technique-related Limitations". Minim Invasive Neurosurg 52 (1): 9–16. doi:10.1055/s-0028-1103305. PMID 19247899. 
  36. Qiu, T.; Zhang, Y.; Wu, J.-S.; Tang, W.-J.; Zhao, Y.; Pan, Z.-G.; Mao, Y.; Zhou, L.-F. (2010). "Virtual reality presurgical planning for cerebral gliomas adjacent to motor pathways in an integrated 3-D stereoscopic visualization of structural MRI and DTI tractography". Acta Neurochir (Wien) 152 (11): 1847–1857. doi:10.1007/s00701-010-0739-x. PMID 20652607. 
  37. Kockro, RA; Stadle, A; Schwandt, E; Reisch, R; Charalampaki, C; Ng, I; Yeo, TT; Hwang, P et al. (2007). "A collaborative virtual reality environment for neurosurgical planning and training". Neurosurgery 61 (5 Suppl 2): 379–391. doi:10.1227/01.neu.0000303997.12645.26. PMID 18091253. 
  38. Yang; Xu, QW; Che, XM; Wu, JS; Sun, B (2009). "Clinical evaluation and follow-up outcome of presurgical plan by Dextroscope: a prospective controlled study in patients with skull base tumors". Surg Neurol 72 (6): 682–689. doi:10.1016/j.surneu.2009.07.040. PMID 19850330. 
  39. Stadie, AT; Kockro, RA; Reisch, R; Tropine, A; Boor, S; Stoeter, P; Perneczky, A (2008). "Virtual reality system for planning minimally invasive neurosurgery. Technical note". J Neurosurg 108 (2): 382–394. doi:10.3171/jns/2008/108/2/0382. PMID 18240940. 
  40. De Notaris, M.; Palma, K.; Serra, L.; Enseñat, J.; Alobid, I.; Poblete, J.; Gonzalez, J.B.; Solari, D. et al. (2014). "A Three-Dimensional Computer-Based Perspective of the Skull Base". World Neurosurg 82 (6): S41–S48. doi:10.1016/j.wneu.2014.07.024. PMID 25496634. 
  41. Franzini, A.; Messina, G.; Marras, C.; Molteni, F.; Cordella, R.; Soliveri, P.; Broggi, G. (2009). "Poststroke fixed dystonia of the foot relieved by chronic stimulation of the posterior limb of the internal capsule". Journal of Neurosurgery 111 (6): 1216–1219. doi:10.3171/2009.4.JNS08785. PMID 19499980. 
  42. Gu, S.-X.; Yang, D.-L.; Cui, D.-M.; Xu, Q.-W.; Che, X.-M.; Wu, J.-S.; Li, W.-S. (2011). "Anatomical studies on the temporal bridging veins with Dextroscope and its application in tumor surgery across the middle and posterior fossa". Clin Neurol Neurosurg 113 (10): 889–894. doi:10.1016/j.clineuro.2011.06.008. PMID 21831519. 
  43. Ha, W.; Yang, D.; Gu, S.; Xu, Q.-W.; Che, X.; Wu, J.-S.; Li, W. (2014). "Anatomical study of suboccipital vertebral arteries and surrounding bony structures using virtual reality technology". Med. Sci. Monit. 20: 802–806. doi:10.12659/MSM.890840. PMID 24829084. 
  44. Kockro, R.A. (2013). "Neurosurgery simulators--beyond the experiment". World Neurosurg 80 (5): e101–102. doi:10.1016/j.wneu.2013.02.017. PMID 23396069. 
  45. Kockro, R.A.; Hwang, P.Y.K. (2009). "Virtual temporal bone: an interactive 3-dimensional learning aid for cranial base surgery". Neurosurgery 64 (5 Suppl 2): 216–229. doi:10.1227/01.NEU.0000343744.46080.91. PMID 19404102. https://www.zora.uzh.ch/id/eprint/32296/2/vorschalt_-4v.pdf. Retrieved 2020-03-30. 
  46. Lee, C.K.; Tay, L.L.; Ng, W.H.; Ng, I.; Ang, B.T. (2008). "Optimization of ventricular catheter placement via posterior approaches: a virtual reality simulation study". Surg Neurol 70 (3): 274–277. doi:10.1016/j.surneu.2007.07.020. PMID 18262623. 
  47. Robison, R.A.; Liu, C.Y.; Apuzzo, M.L.J. (2011). "Man, Mind, and Machine: The Past and Future of Virtual Reality Simulation in Neurologic Surgery". World Neurosurgery 76 (5): 419–430. doi:10.1016/j.wneu.2011.07.008. PMID 22152571. 
  48. Shen, M., Zhang, X.-L., Yang, D.-L., Wu, J.-S., 2010. Stereoscopic virtual reality presurgical planning for cerebrospinal otorrhea. Neurosciences (Riyadh) 15, 204–208.
  49. Shi, J.; Xia, J.; Wei, Y.; Wang, S.; Wu, J.; Chen, F.; Huang, G.; Chen, J. (2014). "Three-dimensional virtual reality simulation of periarticular tumors using Dextroscope reconstruction and simulated surgery: a preliminary 10-case study". Med. Sci. Monit. 20: 1043–1050. doi:10.12659/MSM.889770. PMID 24961404. 
  50. Stadie, A.T.; Kockro, R.A. (2013). "Mono-Stereo-Autostereo". Neurosurgery 72: A63–A77. doi:10.1227/NEU.0b013e318270d310. PMID 23254814. 
  51. Stadie, A.T.; Kockro, R.A.; Serra, L.; Fischer, G.; Schwandt, E.; Grunert, P.; Reisch, R. (2011). "Neurosurgical craniotomy localization using a virtual reality planning system versus intraoperative image–guided navigation". International Journal of Computer Assisted Radiology and Surgery 6 (5): 565–572. doi:10.1007/s11548-010-0529-1. PMID 20809398. 
  52. Yang, D.-L., Che, X., Lou, M., Xu, Q.-W., Wu, J.-S., Li, W., Cui, D.-M., n.d. Application Of Dextroscope Virtual Reality System In Anatomical Research Of Inner Structures In Petrosal Bone.
  53. Caversaccio, M.; Eichenberger, A.; Häusler, R. (2003). "Virtual simulator as a training tool for endonasal surgery". Am J Rhinol 17 (5): 283–290. doi:10.1177/194589240301700506. PMID 14599132. 
  54. Corey, C.L.; Popelka, G.R.; Barrera, J.E.; Most, S.P. (2012). "An analysis of malar fat volume in two age groups: implications for craniofacial surgery". Craniomaxillofac Trauma Reconstr 5 (4): 231–234. doi:10.1055/s-0032-1329545. PMID 24294406. 
  55. Kwon, J.; Barrera, J.E.; Jung, T.-Y.; Most, S.P. (2009). "Measurements of orbital volume change using computed tomography in isolated orbital blowout fractures". Arch Facial Plast Surg 11 (6): 395–398. doi:10.1001/archfacial.2009.77. PMID 19917900. 
  56. Kwon, J.; Barrera, J.E.; Most, S.P. (2010). "Comparative Computation of Orbital Volume From Axial and Coronal CT Using Three-Dimensional Image Analysis". Ophthalmic Plastic & Reconstructive Surgery 26 (1): 26–29. doi:10.1097/IOP.0b013e3181b80c6a. PMID 20090480. 
  57. Li, Y.; Tang, K.; Xu, X.; Yi, B. (2012). "Application of Dextroscope virtual reality in anatomical research of the mandible part of maxillary artery". Beijing da Xue Xue Bao 44 (1): 75–79. PMID 22353905. 
  58. Pau, C.Y.; Barrera, J.E.; Kwon, J.; Most, S.P. (2010). "Three-dimensional analysis of zygomatic-maxillary complex fracture patterns". Craniomaxillofac Trauma Reconstr 3 (3): 167–176. doi:10.1055/s-0030-1263082. PMID 22110833. 
  59. Ma, Shun-Chang; Yang, Jun; Jia, Wang (June 2019). "Application of Dextroscope in a Rare Type of Angiomatous Meningioma Characterized With Coral-Like Vessels" (in en). Journal of Craniofacial Surgery 30 (4): e335–e337. doi:10.1097/SCS.0000000000005271. ISSN 1049-2275. PMID 30946223. https://dx.doi.org/10.1097%2FSCS.0000000000005271. 
  60. Correa, C.R (2006). "Coronary Artery Findings After Left-Sided Compared With Right-Sided Radiation Treatment for Early-Stage Breast Cancer". Journal of Clinical Oncology 25 (21): 3031–3037. doi:10.1200/JCO.2006.08.6595. PMID 17634481. 
  61. Chen, G (2009). "The use of virtual reality for the functional simulation of hepatic tumors (case control study)". International Journal of Surgery 8 (1): 72–78. doi:10.1016/j.ijsu.2009.11.005. PMID 19944191. 
  62. Chen, G., Yang, S.-Z., Wu, G.-Q., Wang, Y., Fan, G.-H., Tan, L.-W., Fang, B., Zhang, S.-X., Dong, J.-H., 2009. Development and clinical application of 3D operative planning system of liver in virtual reality environments. Zhonghua Wai Ke Za Zhi (Chinese Journal of Surgery) 47, 1620–1626.
  63. Haase, J., 2010. Basic Training in Technical Skills: Introduction to Learning"Surgical Skills" in a Constructive Way, in: Lumenta, C.B., Rocco, C.D., Haase, J., Mooij, J.J.A. (Eds.), Neurosurgery, European Manual of Medicine. Springer Berlin Heidelberg, pp. 17–23.
  64. Kockro, Ralf A (2009). "A collaborative virtual reality environment for neurosurgical planning and training". Neurosurgery 61 (5 Suppl 2): 379–391. doi:10.1227/01.neu.0000303997.12645.26. PMID 18091253. 
  65. Kockro, Ralf A.; Tsai, Yeo Tseng; Ng, Ivan; Hwang, Peter; Zhu, Chuangui; Agusanto, Kusuma; Hong, Liang Xiao; Serra, Luis (2009-10-01). "DEX-RAY" (in en). Neurosurgery 65 (4): 795–808. doi:10.1227/01.NEU.0000349918.36700.1C. ISSN 0148-396X. PMID 19834386. https://academic.oup.com/neurosurgery/article/65/4/795/2555762. 
  66. Kockro, Ralf A.; Serra, Luis (2018), Alaraj, Ali, ed., "Patient-Specific Virtual Reality Simulation for Minimally Invasive Neurosurgery" (in en), Comprehensive Healthcare Simulation: Neurosurgery, Comprehensive Healthcare Simulation (Cham: Springer International Publishing): pp. 159–184, doi:10.1007/978-3-319-75583-0_13, ISBN 978-3-319-75583-0, https://doi.org/10.1007/978-3-319-75583-0_13, retrieved 2021-01-15