Earth:Afforestation

From HandWiki
Short description: Establishment of trees where there were none previously
An afforestation project in Rand Wood, Lincolnshire, England

Afforestation is the establishment of a forest or stand of trees (forestation) in an area where there was no recent tree cover.[1] In comparison, reforestation means re-establishing forest that have either been cut down or lost due to natural causes, such as fire, storm, etc.[2] There are three types of afforestation: natural regeneration, agroforestry, commercial plantations.[3] There are several benefits from afforestation such as carbon sequestration, increasing rainfall, prevention of topsoil erosion (from water and wind), flood and landslide mitigation, barriers against high winds, shelter for wildlife, employment and alternative sources of wood products.[3]

Many government and non-governmental organizations directly engage in afforestation programs to create forests and increase carbon capture. Afforestation is an increasingly sought-after method to fight climate concerns, as it is known to increase the soil quality and organic carbon levels into the soil, avoiding desertification. Afforestation is mainly done for conservational and commercial purposes.[4]

Definition

The term afforestation means establishing new forest on lands that were not forest before (e. g. abandoned agriculture).[1] The same definition in other words states that afforestation is "conversion to forest of land that historically has not contained forests".[5]:1794

In comparison, reforestation means the "conversion to forest of land that has previously contained forests but that has been converted to some other use".[5]:1812

Types

There are three types of afforestation:[3]

  1. natural regeneration (where native trees are planted as seeds; this creates new ecosystems and increases carbon sequestration)
  2. agroforestry (this is essentially an agricultural activity carried out in order to grow harvestable crops such as fruits and nuts)
  3. commercial plantations (carried out in order to produce wood and wood-pulp products; this can be seen as an alternative to cutting down naturally-occurring forests)

Procedure

The process of afforestation begins with site selection. Several environmental factors of the site must be analyzed, including climate, soil, vegetation, and human activity.[6] These factors will determine the quality of the site, what species of trees should be planted, and what planting method should be used.[6]

After the forest site has been assessed, the area must be prepared for planting. Preparation can involve a variety of mechanical or chemical methods, such as chopping, mounding, bedding, herbicides, and prescribed burning.[7] Once the site is prepared, planting can take place. One method for planting is direct seeding, which involves sowing seeds directly into the forest floor.[8] Another is seedling planting, which is similar to direct seeding except that seedlings already have an established root system.[9] Afforestation by cutting is an option for tree species that can reproduce asexually, where a piece of a tree stem, branch, root, or leaves can be planted onto the forest floor and sprout successfully.[10] Sometimes special tools, such as a tree planting bar, are used to make planting of trees easier and faster.[11]

Benefits

See also: Reforestation#For climate change mitigationThere are several benefits from afforestation such as carbon sequestration, increasing rainfall, prevention of topsoil erosion (from water and wind), flood and landslide mitigation, barriers against high winds, shelter for wildlife, employment and alternative sources of wood products.[3]

Climate change mitigation

Afforestation boasts many climate-related benefits. Afforestation helps to slow down global warming by reducing CO
2
in the atmosphere and introducing more O2.[12] Trees are carbon sinks that remove CO
2
from the atmosphere via photosynthesis and convert it into biomass.[13]

Scale

The rate of net forest loss decreased substantially over the period 1990–2020 due to a reduction in deforestation in some countries, plus increases in forest area in others through afforestation and the natural expansion of forests.[14] A 2019 study of the global potential for tree restoration showed that there is space for at least 9 million km2 of new forests worldwide, which is a 25% increase from current conditions.[15] This forested area could store up to 205 gigatons of carbon or 25% of the atmosphere's current carbon pool by reducing CO
2
in the atmosphere and introducing more O2.

Environmental benefits

Afforestation provides other environmental benefits, including increasing the soil quality and organic carbon levels in the soil, reducing the risk of erosion and desertification.[12] The planting of trees in urban areas is also able to reduce air pollution via the trees' absorption and filtration of pollutants, including carbon monoxide, sulfur dioxide, and ozone, in addition to CO
2
.[13]

Afforestation protects the biodiversity of plants and animals which allows the sustenance of ecosystems that provide clean air, soil fertilization, etc.[16]

Local climate and rain

A 2017 study gives the first observational evidence that the southern Amazon rainforest triggers its own rainy season using water vapor from plant leaves, which then forms clouds above it.[17] These findings help explain why deforestation in this region is linked with reduced rainfall. A 2009 study hypothesizes that forest cover plays a much greater role in determining rainfall than previously recognized.[18] It explains how forested regions generate large-scale flows in atmospheric water vapor and further underscores the benefit of afforestation in currently barren regions of the world.

Criticism

Afforestation in grasslands

Tree-planting campaigns are criticised for sometimes targeting areas where forests would not naturally occur, such as grassland and savanna biomes.[19][20][21] Carbon sequestration forecasts of afforestation programmes often insufficiently consider possible carbon reductions in soils as well as slowing tree growth over time.[22]

Impact on biodiversity

Afforestation can negatively affect biodiversity through increasing fragmentation and edge effects for the habitat remaining outside the planted area. New forest plantations can introduce generalist predators that would otherwise not be found in open habitat into the covered area, which could detrimentally increase predation rates on the native species of the area. A study by scientists at the British Trust for Ornithology into the decline of British populations of Eurasian curlew found that afforestation had impacted curlew populations through fragmentation of their naturally open grassland habitats and increases in generalist predators.[23]

Surface albedo

Questions have also been raised in the scientific community regarding how global afforestation could affect the surface albedo of Earth. The canopy cover of mature trees could make the surface albedo darker, which causes more heat to be absorbed, potentially raising the temperature of the planet. This is particularly relevant in parts of the world with high levels of snow cover, due to the more significant difference in albedo between highly reflective white snow and more darker forest cover which absorbs more solar radiation.[24][25]

Examples

Australia

In Adelaide, South Australia (a city of 1.3 million as of June 2016), Premier Mike Rann (2002 to 2011) launched an urban forest initiative in 2003 to plant 3 million native trees and shrubs by 2014 on 300 project sites across the metro area.[26] Thousands of Adelaide citizens have participated in community planting days on sites including parks, reserves, transport corridors, schools, water courses and coastline. Only native trees were planted to ensure genetic integrity. He said the project aimed to beautify and cool the city and make it more livable, improve air and water quality, and reduce Adelaide's greenhouse gas emissions by 600,000 tonnes of CO
2
a year.[27]

Canada

In 2003, the government of Canada created a four-year project called the Forest 2020 Plantation Development and Assessment Initiative, which involved planting 6000 ha of fast-growing forests on non-forested lands countrywide. These plantations were used to analyze how afforestation can help to increase carbon sequestration and mitigate greenhouse gas (GHG) emissions while also considering the economic and investment attractiveness of afforestation. The results of the initiative showed that although there is not enough available land in Canada to completely offset the country's GHG emissions, afforestation can be useful mitigation technique for meeting GHG emission goals, especially until permanent, more advanced carbon storage technology becomes available.[28]

On December 14, 2020, Canada's Minister of Natural Resources Seamus O'Regan announced the federal government's investment of $3.16 billion to plant two billion trees over the next 10 years. This plan aims to reduce greenhouse gas emissions by an estimated 12 megatonnes by 2050.[29][30]

China

Strips of forest are planted along hundreds of kilometers of the Yangtze levees in Hubei province[31]

In the past few decades, planting trees has gotten easier for Chinese citizens. There is an annual Arbor Day holiday on March 12 for tree planting, as well as applications that reward citizens with a tree planted in their honor after completing certain requirements. There are additional certificates and awards given to those who take full advantage of such applications and plant three or more trees a year. This all works to encourage and build a community of environmental activism in China.[32]

A law promulgated in 1981 requires that every school student over the age of 11 plants at least one tree per year. As a result, China has the highest afforestation rate of any country or region in the world, with 47,000 square kilometers of afforestation in 2008. However, the forest area per capita is still far lower than the international average. According to Carbon Brief, China planted the largest amount of new forest out of any country between 1990 and 2015, facilitated by the country's Grain for Green program started in 1999, by investing more than $100 billion in afforestation programs and planting more than 35 billion trees across 12 provinces. By 2015, the amount of planted forest in China covered 79 million hectares.

From 2011 to 2016, the city Dongying in Shandong province forested over 13,800 hectares of saline soil through the Shandong Ecological Afforestation Project, which was launched with support from the World Bank. In 2017, the Saihanba Afforestation Community won the UN Champions of the Earth Award in the Inspiration and Action category for "transforming degraded land into a lush paradise".

Historically, there has been evidence that afforestation can be both beneficial and detrimental to both the land area from where the afforestation is happening and the overall effect on climate change. In the late 1900s, China's forest area experienced a significant decrease where the amount of wood, mostly timber, being cut outweighed the rate at which they could grow. This was a result of China's rapid economic development and increasing population, which made wood in high demand. In order to be able to keep up with the demand, China began initiating afforestation programs, effectively becoming the country with the largest forest area.[33] This would also help China respond to the pressure of mitigating the environmental burden they have contributed towards, therefore making afforestation a seemingly mutually beneficial decision.[32]

An example of afforestation being a success in China can be seen with the Loess Plateau, which included the collaborative efforts of international and domestic professionals alongside villagers who carefully analyzed the land and planned a framework that would work well with said land. Through this initiative, millions of villagers across four of China's poorest provinces were able to have improved farming practices, increased income, and more job availability, thus escaping poverty.[34] In addition, the careful selection of trees ensured a healthy, self-sustainable ecosystem between tree and soil which facilitated a net carbon sink.[32]

This contrasts with more recent initiatives where the results have not been so favorable. The Loess Plateau, although successful, was costly, reaching almost US$500 million.[34] China's government, in an attempt to make afforestation both low-cost and less time-consuming, shifted towards monoculture of mostly red pine trees. However, this does not take into consideration the environmental structure, leading to increased soil erosion, desertification, and short-lived trees.[32] The average survival rate for trees planted in afforestation attempts between 1952 and 2005 was a mere 24% and the rate of desertification has induced more frequent and intense sandstorms and dust storms. In fact, China's environmental sustainability index (ESI) is one of the lowest in the world.[35]

In terms of China's afforestation effects on carbon levels, there is ongoing research which aims to analyze the relationship between afforestation and long-term carbon stocks, or carbon sequestration. However, it has been shown that in China particularly, long-term carbon stocks decreased when the age of the tree and soil were younger than 5 years and shot up rapidly thereafter.[36] This means trees from monoculture planting which do not survive never reached full potential for carbon sequestration so despite the large number of trees, China's carbon output is not offset. This does not include the sum of trees that are cut for timber demands. Overall, there is a possibility for afforestation to balance carbon levels and aid carbon neutrality, but several challenges still remain which hinder an all encompassing effort.[33]

German Embassy Project Haloxylon ammodendron, Xinjiang, China

Although China has set official goals for reforestation, these goals were set for an 80-year time horizon and were not significantly met by 2008. China is trying to correct these problems with projects such as the Green Wall of China, which aims to replant forests and halt the expansion of the Gobi Desert. A law promulgated in 1981 requires that every school student over the age of 11 plants at least one tree per year. But average success rates, especially in state-sponsored plantings, remain relatively low. And even the properly planted trees have had great difficulty surviving the combined impacts of prolonged droughts, pest infestation, and fires. Nonetheless, China currently has the highest afforestation rate of any country or region in the world, with 4.77 million hectares (47,000 square kilometers) of afforestation in 2008.[37]

According to the 2021 government Work report, the forest coverage rate will reach 24.1 percent when introducing the main targets and tasks for the 14th Five-Year Plan period.[38] According to the National Forestry and Grassland Administration, China's forest coverage rate has increased from 12 percent in the early 1980s to 23.04 percent in August 2021. Several generations of People in Saihanba keep in mind the mission of restoring nature and protecting ecology, and work hard to build the largest artificial forest farm in the world. Compared with before the site was built, the forest coverage rate increased from 11.4% to 80%, and the forest stock increased from 330,000 cubic meters to 10.12 million cubic meters. In 2017, the builders of Saihanba Forest Farm in Hebei province won the Highest honor of the United Nations environmental protection - "Champions of the Earth award".[39]

Europe

Afforestation on former colliery land near Cwm-Hwnt, Wales

Europe has deforested the majority of its historical forests. The European Union (EU) has paid farmers for afforestation since 1990, offering grants to turn farmland into forest and payments for the management of forest. An EU program, running between 2000 and 2006, afforested more than 1,000 square kilometres of land (precise statistics not yet available). Another such program began in 2007. Europe's forests are growing by 8,000 square kilometres a year thanks to these programmes.

According to Food and Agriculture Organization statistics, Spain had the third fastest afforestation rate in Europe in the 1990-2005 period, after Iceland and Ireland. In those years, a total of 44,360 square kilometers were afforested, and the total forest cover rose from 13.5 to 17.9 million hectares. In 1990, forests covered 26.6% of the Spanish territory. As of 2007, that figure had risen to 36.6%. Spain today has the fifth largest forest area in the European Union.

In January 2013, the UK government set a target of 12% woodland cover in England by 2060, up from the then 10%. In Wales the National Assembly for Wales has set a target of 19% woodland cover, up from 15%. Government-backed initiatives such as the Woodland Carbon Code are intended to support this objective by encouraging corporations and landowners to create new woodland to offset their carbon emissions. Charitable groups such as Trees for Life (Scotland) also contribute to afforestation and reforestation efforts in the UK.

India

Afforestation in South India

23% of India is covered by forest[citation needed]. In 2018, the total forest and tree cover in India increased to 24.39% or 8,020. 88 km2. The forests of India are grouped into 5 major categories and 16 types based on biophysical criteria. 38% of the forest is categorized as subtropical dry deciduous and 30% as tropical moist deciduous and other smaller groups. Only local species are planted in an area. Trees bearing fruits are preferred wherever possible due to their function as a food source.

In 2019, 220 million trees were planted in a single day in the Indian state of Uttar Pradesh.[40][41]

On Thursday, 29 August 2019, Prime Minister of India Mr. Narendra Modi released ₹47, 436 crores (over 6.6 Billion USD) to various states for compulsory afforestation activities. The funds can be used for treatment of catchment areas, assisted natural generation, forest management, wildlife protection and management, relocation of villages from protected areas, managing human-wildlife conflicts, training and awareness generation, supply of wood saving devices and allied activities. Increasing the tree cover would help in creating additional carbon sink to meet the nation's Intended Nationally Determined Contribution (INDC) of 2.5 to 3 billion tonnes of carbon dioxide equivalent through additional forest and tree cover by 2030 - part of India's efforts to combat climate change. The Maharashtra government planted almost 20,000,000 saplings in the entire state, and will pledge to plant another 30,000,000 next year. According to The Telegraph, the Indian government has attributed $6.2 billion for tree-planting in order to increase “forestation in line with agreements made at the Paris climate change summit in 2015.” The Indian government has also passed the CAMPA (Compensatory Afforestation Fund Management and Planning Authority) law, which will allow about 40 thousand crores rupees (almost $6 Billion) will go to Indian states for planting trees.

Fourth year of a genetically modified forest in Iran, planted by Aras GED through commercial afforestation

Israel

Trees in the Negev Desert. Man-made dunes (here a liman) help keep in rainwater, creating an oasis.

With over 240 million planted trees, Israel is one of only two countries that entered the 21st century with a net gain in the number of trees, due to massive afforestation efforts. Most Israeli forests are the product of a major afforestation campaign by the Jewish National Fund (JNF).[citation needed]

United States

Approximately one quarter of the United States is covered in non-protected forest.[42] Nevertheless, areas in the US were subject to significant tree planting. In the 1800s people moving westward encountered the Great Plains – land with fertile soil, a growing population and a demand for timber but with few trees to supply it. So tree planting was encouraged along homesteads. Arbor Day was founded in 1872 by Julius Sterling Morton in Nebraska City, Nebraska. By the 1930s the Dust Bowl environmental disaster signified a reason for significant new tree cover. Public works programs under the New Deal saw the planting of 18,000 miles of windbreaks stretching from North Dakota to Texas to fight soil erosion (see Great Plains Shelterbelt).

See also


References

  1. 1.0 1.1 Terms and definitions – FRA 2020. Rome: FAO. 2018. http://www.fao.org/3/I8661EN/i8661en.pdf. 
  2. "Reforestation - Definitions from Dictionary.com". dictionary.reference.com. http://dictionary.reference.com/browse/Reforestation. 
  3. 3.0 3.1 3.2 3.3 Lark, Rachel (2023-10-02). "The Importance of Afforestation" (in en-US). https://environment.co/the-importance-of-afforestation/. 
  4. "Energy Education". https://energyeducation.ca/encyclopedia/Afforestation. 
  5. 5.0 5.1 IPCC, 2022: Annex I: Glossary [van Diemen, R., J.B.R. Matthews, V. Möller, J.S. Fuglestvedt, V. Masson-Delmotte, C.  Méndez, A. Reisinger, S. Semenov (eds)]. In IPCC, 2022: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, J. Malley, (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA. doi: 10.1017/9781009157926.020
  6. 6.0 6.1 Duan, Jie; Abduwali, Dilnur (2021-03-10), Cristina Gonçalves, Ana, ed., "Basic Theory and Methods of Afforestation" (in en), Silviculture (IntechOpen), doi:10.5772/intechopen.96164, ISBN 978-1-83968-448-7, https://www.intechopen.com/books/silviculture/basic-theory-and-methods-of-afforestation, retrieved 2021-03-25 
  7. Knapp, Benjamin O.; Wang, G. Geoff; Walker, Joan L.; Cohen, Susan (2006-05-01). "Effects of site preparation treatments on early growth and survival of planted longleaf pine (Pinus palustris Mill.) seedlings in North Carolina" (in en). Forest Ecology and Management 226 (1): 122–128. doi:10.1016/j.foreco.2006.01.029. ISSN 0378-1127. https://www.sciencedirect.com/science/article/pii/S0378112706000569. 
  8. Grossnickle, Steven C.; Ivetić, Vladan (2017-12-30). "Direct Seeding in Reforestation – A Field Performance Review" (in en). Reforesta (4): 94–142. doi:10.21750/REFOR.4.07.46. ISSN 2466-4367. https://journal.reforestationchallenges.org/index.php/REFOR/article/view/76. 
  9. Dey, Daniel C.; Jacobs, Douglass; McNabb, Ken; Miller, Gary; Baldwin, V.; Foster, G. (2008-02-01). "Artificial Regeneration of Major Oak (Quercus) Species in the Eastern United States—A Review of the Literature". Forest Science 54 (1): 77–106. doi:10.1093/forestscience/54.1.77. ISSN 0015-749X. 
  10. Kauffman, J. Boone (1991). "Survival by Sprouting Following Fire in Tropical Forests of the Eastern Amazon". Biotropica 23 (3): 219–224. doi:10.2307/2388198. ISSN 0006-3606. Bibcode1991Biotr..23..219K. https://www.jstor.org/stable/2388198. 
  11. Sweeney, Bernard W.; Czapka, Stephen J.; Petrow, L. Carol A. (2007-05-01). "How Planting Method, Weed Abatement, and Herbivory Affect Afforestation Success" (in en). Southern Journal of Applied Forestry 31 (2): 85–92. doi:10.1093/sjaf/31.2.85. ISSN 0148-4419. https://academic.oup.com/sjaf/article/31/2/85/4782466. 
  12. 12.0 12.1 Suganuma, H.; Egashira, Y.; Utsugi, H.; Kojima, T. (July 2012). "Estimation of CO2 reduction amount by arid land afforestation in Western Australia". 2012 IEEE International Geoscience and Remote Sensing Symposium: 7216–7219. doi:10.1109/IGARSS.2012.6351997. https://ieeexplore.ieee.org/document/6351997. 
  13. 13.0 13.1 Freedman, Bill; Keith, Todd (1996-04-11). "Planting trees for carbon credits: a discussion of context, issues, feasibility, and environmental benefits" (in en). Environmental Reviews 4 (2): 100–111. doi:10.1139/a96-006. https://cdnsciencepub.com/doi/abs/10.1139/a96-006. 
  14. Global Forest Resources Assessment 2020 – Key findings. FAO. 2020. doi:10.4060/ca8753en. ISBN 978-92-5-132581-0. https://doi.org/10.4060/ca8753en. 
  15. Bastin, Jean-Francois; Finegold, Yelena; Garcia, Claude; Mollicone, Danilo; Rezende, Marcelo; Routh, Devin; Zohner, Constantin M.; Crowther, Thomas W. (2019-07-05). "The global tree restoration potential" (in en). Science 365 (6448): 76–79. doi:10.1126/science.aax0848. ISSN 0036-8075. https://www.science.org/doi/10.1126/science.aax0848. 
  16. Why is biodiversity important? (2018). Retrieved April 28, 2023, from https://www.conservation.org/blog/why-is-biodiversity-important
  17. Jonathon S. Wright, Rong Fu, John R. Worden, Sudip Chakraborty, Nicholas E. Clinton, Camille Risi, Ying Sun, Lei Yin, Rainforest-initiated wet season onset, Proceedings of the National Academy of Sciences Aug 2017, 114 (32) 8481-8486; DOI: 10.1073/pnas.1621516114
  18. Douglas Sheil, Daniel Murdiyarso, How Forests Attract Rain: An Examination of a New Hypothesis; BioScience, Volume 59, Issue 4, April 2009, Pages 341–347, https://doi.org/10.1525/bio.2009.59.4.12
  19. Dasgupta, Shreya (2021-06-01). "Many Tree-Planting Campaigns Are Based on Flawed Science" (in en-GB). https://science.thewire.in/environment/many-tree-planting-campaigns-are-based-on-flawed-science/. 
  20. "Can tree campaigns curb climate change without harming grasslands?" (in en-US). 2021-05-28. https://scienceline.org/2021/05/can-tree-campaigns-curb-climate-change-without-harming-grasslands/. 
  21. Bond, William J.; Stevens, Nicola; Midgley, Guy F.; Lehmann, Caroline E.R. (November 2019). "The Trouble with Trees: Afforestation Plans for Africa" (in en). Trends in Ecology & Evolution 34 (11): 963–965. doi:10.1016/j.tree.2019.08.003. PMID 31515117. https://linkinghub.elsevier.com/retrieve/pii/S0169534719302526. 
  22. Maschler, Julia; Bialic-Murphy, Lalasia; Wan, Joe; Andresen, Louise C.; Zohner, Constantin M.; Reich, Peter B.; Lüscher, Andreas; Schneider, Manuel K. et al. (2022) (in en), Data from: Links across ecological scales: Plant biomass responses to elevated CO2, Dryad, doi:10.5061/dryad.hhmgqnkk4, http://datadryad.org/stash/dataset/doi:10.5061/dryad.hhmgqnkk4, retrieved 2022-10-03 
  23. Franks, Samantha E.; Douglas, David J. T.; Gillings, Simon; Pearce-Higgins, James W. (2017-07-03). "Environmental correlates of breeding abundance and population change of Eurasian Curlew Numenius arquata in Britain" (in en). Bird Study 64 (3): 393–409. doi:10.1080/00063657.2017.1359233. ISSN 0006-3657. Bibcode2017BirdS..64..393F. 
  24. Mykleby, P. M.; Snyder, P. K.; Twine, T. E. (2017-03-16). "Quantifying the trade-off between carbon sequestration and albedo in midlatitude and high-latitude North American forests" (in en). Geophysical Research Letters 44 (5): 2493–2501. doi:10.1002/2016GL071459. ISSN 0094-8276. Bibcode2017GeoRL..44.2493M. https://onlinelibrary.wiley.com/doi/abs/10.1002/2016GL071459. 
  25. Rohatyn, Shani; Yakir, Dan; Rotenberg, Eyal; Carmel, Yohay (2022-09-23). "Limited climate change mitigation potential through forestation of the vast dryland regions" (in en). Science 377 (6613): 1436–1439. doi:10.1126/science.abm9684. ISSN 0036-8075. PMID 36137038. Bibcode2022Sci...377.1436R. https://www.science.org/doi/10.1126/science.abm9684. 
  26. https://www.greenadelaide.sa.gov.au/projects/adelaide-greening-strategy
  27. https://cdn.environment.sa.gov.au/carbonneutraladelaide/general-images/Carbon-Neutral-Adelaide-status-report-2021_FINAL.pdf?v=1691558211
  28. Dominy, S.W.J. (June 2010). "A retrospective and lessons learned from Natural Resources Canada's Forest 2020 afforestation initiative" (in en). The Forestry Chronicle 86 (3): 339–347. doi:10.5558/tfc86339-3. 
  29. "2 Billion Trees Program" (in en). Government of Canada. 16 December 2021. https://www.canada.ca/en/campaign/2-billion-trees/2-billion-trees-program.html. 
  30. "Canada calls for proposals to support 2 Billion Trees program". Woodbusiness.ca. Canadian Forest Industries magazine (Annex Business Media). December 20, 2021. https://www.woodbusiness.ca/canada-calls-for-proposals-to-support-2-billion-trees-program/#:~:text=The%202%20Billion%20Trees%20program%20is%20a%20key%20component%20of,restore%20nature%20and%20protect%20biodiversity.. 
  31. 省河道堤防建设管理局2016年工作要点 (The work goals of the provincial waterway flood protection levee administration for 2016), 2016-02-17
  32. 32.0 32.1 32.2 32.3 Li, Yifei; Shapiro, Judith (2020). China goes green: coercive environmentalism for a troubled planet = Zhong guo zou xiang lü se. Cambridge, UK Medford, MA: Polity. ISBN 978-1-5095-4312-0. 
  33. 33.0 33.1 Xu, Deying (1995-01-01). "The potential for reducing atmospheric carbon by large-scale afforestation in China and related cost/benefit analysis" (in en). Biomass and Bioenergy. Forestry and Climate Change 8 (5): 337–344. doi:10.1016/0961-9534(95)00026-7. ISSN 0961-9534. Bibcode1995BmBe....8..337X. https://dx.doi.org/10.1016/0961-9534%2895%2900026-7. 
  34. 34.0 34.1 "Restoring China's Loess Plateau" (in en). https://www.worldbank.org/en/news/feature/2007/03/15/restoring-chinas-loess-plateau. 
  35. Cao, Shixiong; Chen, Li; Shankman, David; Wang, Chunmei; Wang, Xiongbin; Zhang, Hong (2011-02-01). "Excessive reliance on afforestation in China's arid and semi-arid regions: Lessons in ecological restoration" (in en). Earth-Science Reviews 104 (4): 240–245. doi:10.1016/j.earscirev.2010.11.002. ISSN 0012-8252. Bibcode2011ESRv..104..240C. https://www.sciencedirect.com/science/article/pii/S0012825210001571. 
  36. Shi, Jun; Cui, Linli (2010-11-30). "Soil carbon change and its affecting factors following afforestation in China" (in en). Landscape and Urban Planning 98 (2): 75–85. doi:10.1016/j.landurbplan.2010.07.011. ISSN 0169-2046. https://www.sciencedirect.com/science/article/pii/S0169204610001799. 
  37. Yang, Ling. "China to plant more trees in 2009". Xinhua News Agency. http://news.xinhuanet.com/english/2009-01/09/content_10631987.htm. 
  38. "Outline of the 14th Five-Year Plan (2021-2025) for National Economic and Social Development and Vision 2035 of the People's Republic of China_ News_ 福建省人民政府门户网站". https://www.fujian.gov.cn/english/news/202108/t20210809_5665713.htm. 
  39. Sun, Liying. "Numbers speak: 43 years in the making! We've been doing this big thing in silence". Xinhua News Agency. http://www.xinhuanet.com/video/sjxw/2021-03/12/c_1211063046.htm. 
  40. "Uttar Pradesh plants 220 million trees in one day" (in en-IN). The Hindu. 2019-08-13. ISSN 0971-751X. https://www.thehindu.com/news/national/other-states/uttar-pradesh-plants-220-million-trees-in-one-day/article29070682.ece. 
  41. "Indians Plant 220 Million Trees In A Single Day" (in en). 2019-08-11. https://www.huffpost.com/entry/india-plant-trees-220-million_n_5d501f43e4b0fc06ace91e2a. 
  42. Support, Extension Web (16 October 2018). "Bloomberg Illustrates How America Uses Its Land". Ag - Small Farms/Commercial Ag. https://extension.oregonstate.edu/bloomberg-illustrates-how-america-uses-its-land.