Ekeland's variational principle

From HandWiki

In mathematical analysis, Ekeland's variational principle, discovered by Ivar Ekeland,Cite error: Closing </ref> missing for <ref> tag In proof theory, it is equivalent to Π11CA0 over RCA0, i.e. relatively strong.

It also leads to a quick proof of the Caristi fixed point theorem.[1][2]

History

Ekeland was associated with the Paris Dauphine University when he proposed this theorem.[3]

Ekeland's variational principle

Preliminary definitions

A function [math]\displaystyle{ f : X \to \R \cup \{-\infty, +\infty\} }[/math] valued in the extended real numbers [math]\displaystyle{ \R \cup \{-\infty, +\infty\} = [-\infty, +\infty] }[/math] is said to be bounded below if [math]\displaystyle{ \inf_{} f(X) = \inf_{x \in X} f(x) \gt -\infty }[/math] and it is called proper if it has a non-empty effective domain, which by definition is the set [math]\displaystyle{ \operatorname{dom} f ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \{x \in X : f(x) \neq +\infty\}, }[/math] and it is never equal to [math]\displaystyle{ -\infty. }[/math] In other words, a map is proper if is valued in [math]\displaystyle{ \R \cup \{+\infty\} }[/math] and not identically [math]\displaystyle{ +\infty. }[/math] The map [math]\displaystyle{ f }[/math] is proper and bounded below if and only if [math]\displaystyle{ -\infty \lt \inf_{} f(X) \neq +\infty, }[/math] or equivalently, if and only if [math]\displaystyle{ \inf_{} f(X) \in \R. }[/math]

A function [math]\displaystyle{ f :X \to [-\infty, +\infty] }[/math] is lower semicontinuous at a given [math]\displaystyle{ x_0 \in X }[/math] if for every real [math]\displaystyle{ y \lt f\left(x_0\right) }[/math] there exists a neighborhood [math]\displaystyle{ U }[/math] of [math]\displaystyle{ x_0 }[/math] such that [math]\displaystyle{ f(u) \gt y }[/math] for all [math]\displaystyle{ u \in U. }[/math] A function is called lower semicontinuous if it is lower semicontinuous at every point of [math]\displaystyle{ X, }[/math] which happens if and only if [math]\displaystyle{ \{x \in X : ~f(x) \gt y\} }[/math] is an open set for every [math]\displaystyle{ y \in \R, }[/math] or equivalently, if and only if all of its lower level sets [math]\displaystyle{ \{x \in X : ~f(x) \leq y\} }[/math] are closed.

Statement of the theorem

Ekeland's variational principle[4] — Let [math]\displaystyle{ (X, d) }[/math] be a complete metric space and let [math]\displaystyle{ f : X \to \R \cup \{+\infty\} }[/math] be a proper lower semicontinuous function that is bounded below (so [math]\displaystyle{ \inf_{} f(X) \in \R }[/math]). Pick [math]\displaystyle{ x_0 \in X }[/math] such that [math]\displaystyle{ f(x_0) \in \R }[/math] (or equivalently, [math]\displaystyle{ f(x_0) \neq +\infty }[/math]) and fix any real [math]\displaystyle{ \varepsilon \gt 0. }[/math] There exists some [math]\displaystyle{ v \in X }[/math] such that [math]\displaystyle{ f(v) ~\leq~ f\left(x_0\right) - \varepsilon \; d \left(x_0, v\right) }[/math] and for every [math]\displaystyle{ x \in X }[/math] other than [math]\displaystyle{ v }[/math] (that is, [math]\displaystyle{ x \neq v }[/math]), [math]\displaystyle{ f(v) ~\lt ~ f(x) + \varepsilon \; d(v, x). }[/math]

For example, if [math]\displaystyle{ f }[/math] and [math]\displaystyle{ (X, d) }[/math] are as in the theorem's statement and if [math]\displaystyle{ x_0 \in X }[/math] happens to be a global minimum point of [math]\displaystyle{ f, }[/math] then the vector [math]\displaystyle{ v }[/math] from the theorem's conclusion is [math]\displaystyle{ v := x_0. }[/math]

Corollaries

Corollary[5] — Let [math]\displaystyle{ (X, d) }[/math] be a complete metric space, and let [math]\displaystyle{ f : X \to \R \cup \{+\infty\} }[/math] be a lower semicontinuous functional on [math]\displaystyle{ X }[/math] that is bounded below and not identically equal to [math]\displaystyle{ +\infty. }[/math] Fix [math]\displaystyle{ \varepsilon \gt 0 }[/math] and a point [math]\displaystyle{ x_0 \in X }[/math] such that [math]\displaystyle{ f\left(x_0\right) ~\leq~ \varepsilon + \inf_{x \in X} f(x). }[/math] Then, for every [math]\displaystyle{ \lambda \gt 0, }[/math] there exists a point [math]\displaystyle{ v \in X }[/math] such that [math]\displaystyle{ f(v) ~\leq~ f\left(x_0\right), }[/math] [math]\displaystyle{ d\left(x_0, v\right) ~\leq~ \lambda, }[/math] and, for all [math]\displaystyle{ x \neq v, }[/math] [math]\displaystyle{ f(x)+ \frac{\varepsilon}{\lambda} d(v, x) ~\gt ~ f(v) . }[/math]

The principle could be thought of as follows: For any point [math]\displaystyle{ x_0 }[/math] which nearly realizes the infimum, there exists another point [math]\displaystyle{ v }[/math], which is at least as good as [math]\displaystyle{ x_0 }[/math], it is close to [math]\displaystyle{ x_0 }[/math] and the perturbed function, [math]\displaystyle{ f(x)+\frac{\varepsilon}{\lambda} d(v, x) }[/math], has unique minimum at [math]\displaystyle{ v }[/math]. A good compromise is to take [math]\displaystyle{ \lambda := \sqrt{\varepsilon} }[/math] in the preceding result.[5]

See also

References

  1. Kirk, William A.; Goebel, Kazimierz (1990). Topics in Metric Fixed Point Theory. Cambridge University Press. ISBN 0-521-38289-0. 
  2. Ok, Efe (2007). "D: Continuity I". Real Analysis with Economic Applications. Princeton University Press. pp. 664. ISBN 978-0-691-11768-3. http://homepages.nyu.edu/~eo1/Book-PDF/Ekeland.pdf. Retrieved January 31, 2009. 
  3. Cite error: Invalid <ref> tag; no text was provided for refs named Eke74
  4. Zalinescu 2002, p. 29.
  5. 5.0 5.1 Zalinescu 2002, p. 30.

Bibliography