Engineering:Energy density Extended Reference Table

From HandWiki

This is an extended version of the energy density table from the main Energy density page:

Energy densities table
Storage type Specific energy (MJ/kg) Energy density (MJ/L) Peak recovery efficiency % Practical recovery efficiency %
Arbitrary Antimatter 89,875,517,874 depends on density
Deuterium–tritium fusion 576,000,000[1]
Uranium-235 fissile isotope 144,000,000[1] 1,500,000,000
Natural uranium (99.3% U-238, 0.7% U-235) in fast breeder reactor 86,000,000
Reactor-grade uranium (3.5% U-235) in light-water reactor 3,456,000 35%
Pu-238 α-decay 2,200,000
Hf-178m2 isomer 1,326,000 17,649,060
Natural uranium (0.7% U235) in light-water reactor 443,000 35%
Ta-180m isomer 41,340 689,964
Metallic hydrogen (recombination energy) 216[2]
Specific orbital energy of Low Earth orbit (approximate) 33.0
Beryllium + Oxygen 23.9[3]
Lithium + Fluorine 23.75[citation needed]
Octaazacubane potential explosive 22.9[4]
Ammonia (NH3) 16.9 11.5[5][circular reference]
Hydrogen + Oxygen 13.4[6]
Gasoline + Oxygen –> Derived from Gasoline 13.3[citation needed]
Dinitroacetylene explosive - computed[citation needed] 9.8
Octanitrocubane explosive 8.5[7] 16.9[8]
Tetranitrotetrahedrane explosive - computed[citation needed] 8.3
Heptanitrocubane explosive - computed[citation needed] 8.2
Sodium (reacted with chlorine)[citation needed] 7.0349
Hexanitrobenzene explosive 7[9]
Tetranitrocubane explosive - computed[citation needed] 6.95
Ammonal (Al+NH4NO3 oxidizer)[citation needed] 6.9 12.7
Tetranitromethane + hydrazine bipropellant - computed[citation needed] 6.6
Nitroglycerin 6.38[10] 10.2[11]
ANFO-ANNM[citation needed] 6.26
battery, Lithium–air 6.12
Octogen (HMX) 5.7[10] 10.8[12]
Copper Thermite (Al + CuO as oxidizer)[citation needed] 4.13 20.9
Thermite (powder Al + Fe2O3 as oxidizer) 4.00 18.4
Hydrogen peroxide decomposition (as monopropellant) 2.7 3.8
battery, Lithium-ion nanowire 2.54 29 95%[clarification needed][13]
battery, Lithium Thionyl Chloride (LiSOCl2)[14] 2.5
Water 220.64 bar, 373.8 °C[citation needed][clarification needed] 1.968 0.708
Kinetic energy penetrator [clarification needed] 1.9 30
battery, Fluoride-ion [citation needed] 1.7 2.8
battery, Hydrogen closed cycle H fuel cell[15] 1.62
Hydrazine decomposition (as monopropellant) 1.6 1.6
Ammonium nitrate decomposition (as monopropellant) 1.4 2.5
Thermal Energy Capacity of Molten Salt 1[citation needed] 98%[16]
Molecular spring approximate[citation needed] 1
battery, Sodium–Sulfur 0.72[17] 1.23[citation needed] 85%[18]
battery, Lithium–Manganese[19][20] 0.83-1.01 1.98-2.09
battery, Lithium-ion[21][22] 0.46-0.72 0.83-3.6[23] 95%[24]
battery, Lithium–Sulfur[25] 1.80[26] 1.26
battery, Sodium–Nickel Chloride, High Temperature 0.56
battery, Silver-oxide[19] 0.47 1.8
Flywheel 0.36-0.5[27][28]
5.56 × 45 mm NATO bullet[clarification needed] 0.4 3.2
battery, Nickel–metal hydride (NiMH), low power design as used in consumer batteries[29] 0.4 1.55
battery, Zinc-manganese (alkaline), long life design[19][21] 0.4-0.59 1.15-1.43
Liquid Nitrogen 0.349
Water - Enthalpy of Fusion 0.334 0.334
battery, Zinc Bromine flow (ZnBr)[30] 0.27
battery, Nickel metal hydride (NiMH), High Power design as used in cars[31] 0.250 0.493
battery, Nickel–Cadmium (NiCd)[21] 0.14 1.08 80%[24]
battery, Zinc–Carbon[21] 0.13 0.331
battery, Lead–acid[21] 0.14 0.36
battery, Vanadium redox 0.09[citation needed] 0.1188 7070-75%
battery, Vanadium–Bromide redox 0.18 0.252 80%–90%[32]
Capacitor Ultracapacitor 0.0199[33] 0.050[citation needed]
Capacitor Supercapacitor 0.01[citation needed] 80%–98.5%[34] 39%–70%[34]
Superconducting magnetic energy storage 0 0.008[35] >95%
Capacitor 0.002[36]
Neodymium magnet 0.003[37]
Ferrite magnet 0.0003[37]
Spring power (clock spring), torsion spring 0.0003[38] 0.0006
Storage type Energy density by mass (MJ/kg) Energy density by volume (MJ/L) Peak recovery efficiency % Practical recovery efficiency %

Notes

  1. 1.0 1.1 Prelas, Mark (2015). Nuclear-Pumped Lasers. Springer. p. 135. ISBN 9783319198453. https://books.google.com/books?id=Hmn_CgAAQBAJ&pg=PA135. 
  2. http://iopscience.iop.org/1742-6596/215/1/012194/pdf/1742-6596_215_1_012194.pdf [bare URL PDF]
  3. Cosgrove, Lee A.; Snyder, Paul E. (2002-05-01). "The Heat of Formation of Beryllium Oxide1". Journal of the American Chemical Society 75 (13): 3102–3103. doi:10.1021/ja01109a018. 
  4. Glukhovtsev, Mikhail N.; Jiao, Haijun; Schleyer, Paul von Ragué (1996-05-28). "Besides N2, What Is the Most Stable Molecule Composed Only of Nitrogen Atoms?†". Inorganic Chemistry 35 (24): 7124–7133. doi:10.1021/ic9606237. PMID 11666896. 
  5. Ammonia
  6. Miller, Catherine (1 February 2021). "Introduction to Rocket Propulsion". https://www.cs.middlebury.edu/~cm2/personal-website/lecture_notes/lecture6.pdf. 
  7. Wiley Interscience
  8. Octanitrocubane
  9. Wiley Interscience
  10. 10.0 10.1 "Chemical Explosives". Fas.org. 2008-05-30. http://www.fas.org/man/dod-101/navy/docs/es310/chemstry/chemstry.htm. Retrieved 2010-05-07. 
  11. Nitroglycerin
  12. HMX
  13. "Nanowire battery can hold 10 times the charge of existing lithium-ion battery". News-service.stanford.edu. 2007-12-18. http://news-service.stanford.edu/news/2008/january9/nanowire-010908.html. Retrieved 2010-05-07. 
  14. "Lithium Thionyl Chloride Batteries". Nexergy. http://www.nexergy.com/lithium-thionyl-chloride.htm. Retrieved 2010-05-07. 
  15. "The Unitized Regenerative Fuel Cell". Llnl.gov. 1994-12-01. http://www.llnl.gov/str/Mitlit.html. Retrieved 2010-05-07. 
  16. "Technology". SolarReserve. http://www.solar-reserve.com/technology.html. Retrieved 2010-05-07. 
  17. "New battery could change world, one house at a time". Heraldextra.com. 2009-04-04. http://www.heraldextra.com/news/article_b0372fd8-3f3c-11de-ac77-001cc4c002e0.html. Retrieved 2010-05-07. 
  18. Kita, A.; Misaki, H.; Nomura, E.; Okada, K. (August 1984). "Energy Citations Database (ECD) - - Document #5960185". Proc., Intersoc. Energy Convers. Eng. Conf.; (United States) (Osti.gov) 2. 
  19. 19.0 19.1 19.2 "ProCell Lithium battery chemistry". Duracell. http://www.duracell.com/Procell/chemistries/lithium.asp. Retrieved 2009-04-21. 
  20. "Properties of non-rechargeable lithium batteries". corrosion-doctors.org. http://www.corrosion-doctors.org/PrimBatt/table2.htm. Retrieved 2009-04-21. 
  21. 21.0 21.1 21.2 21.3 21.4 "Battery energy storage in various battery types". AllAboutBatteries.com. http://www.allaboutbatteries.com/Battery-Energy.html. Retrieved 2009-04-21. 
  22. A typically available lithium-ion cell with an Energy Density of 201 wh/kg "Li-Ion 18650 Cylindrical Cell 3.6V 2600mAh - Highest Energy Density Cell in Market (LC-18650H4) - LC-18650H4". Archived from the original on 2008-12-01. https://web.archive.org/web/20081201065328/http://www.batteryspace.com/index.asp?PageAction=VIEWPROD&ProdID=2763. Retrieved 2012-12-14. 
  23. "Lithium Batteries". http://www.globalspec.com/Specifications/Electrical_Electronic_Components/Batteries/Lithium_Batteries. Retrieved 2010-07-02. 
  24. 24.0 24.1 Justin Lemire-Elmore (2004-04-13). "The Energy Cost of Electric and Human-Powered Bicycles". p. 7. http://www.ebikes.ca/sustainability/Ebike_Energy.pdf. Retrieved 2009-02-26. "Table 3: Input and Output Energy from Batteries" 
  25. "Lithium Sulfur Rechargeable Battery Data Sheet". Sion Power, Inc.. 2005-09-28. Archived from the original on 2008-08-28. https://web.archive.org/web/20080828105501/http://www.sionpower.com/pdf/sion_product_spec.pdf. 
  26. Kolosnitsyn, V.S.; E.V. Karaseva (2008). "Lithium-sulfur batteries: Problems and solutions". Russian Journal of Electrochemistry 44 (5): 506–509. doi:10.1134/s1023193508050029. 
  27. "Storage Technology Report, ST6 Flywheel". http://www.itpower.co.uk/investire/pdfs/flywheelrep.pdf. 
  28. "Next-gen Of Flywheel Energy Storage". Product Design & Development. Archived from the original on 2010-07-10. https://web.archive.org/web/20100710052927/http://www.pddnet.com/article-next-gen-of-flywheel-energy-storage/. Retrieved 2009-05-21. 
  29. "Advanced Materials for Next Generation NiMH Batteries, Ovonic, 2008". http://www.ovonic.com/PDFs/ovonic-materials/Ovonic-Fetcenko-2008-Wolsky-Seminar.pdf. 
  30. "ZBB Energy Corp". Archived from the original on 2007-10-15. https://web.archive.org/web/20071015134212/http://zbbenergy.com/technology.htm. "75 to 85 watt-hours per kilogram" 
  31. High Energy Metal Hydride Battery
  32. "Microsoft Word - V-FUEL COMPANY AND TECHNOLOGY SHEET 2008.doc". http://www.vfuel.com.au/infosheet.pdf. Retrieved 2010-05-07. 
  33. "Maxwell Technologies: Ultracapacitors - BCAP3000". Maxwell.com. http://maxwell.com/ultracapacitors/products/large-cell/bcap3000.asp. Retrieved 2010-05-07. 
  34. 34.0 34.1 "Archived copy". Archived from the original on 2012-07-22. https://web.archive.org/web/20120722130618/http://www3.fs.cvut.cz/web/fileadmin/documents/12241-BOZEK/publikace/2004/Sup-Cap-Energy-Storage.pdf. Retrieved 2012-12-14. 
  35. [1]
  36. "Department of Computing". http://www.doc.ic.ac.uk/~mpj01/ise2grp/energystorage_report/node9.html. 
  37. 37.0 37.1 "Archived copy". http://www.askmar.com/Magnets/Promising%20Magnet%20Applications.pdf. 
  38. "Garage Door Springs". Garagedoor.org. http://garagedoor.org/residential/torsion-springs.php. Retrieved 2010-05-07.