Engineering:Energy density Extended Reference Table
From HandWiki
Short description: none
This is an extended version of the energy density table from the main Energy density page:
| Storage type | Specific energy (MJ/kg) | Energy density (MJ/L) | Peak recovery efficiency % | Practical recovery efficiency % |
|---|---|---|---|---|
| Arbitrary Antimatter | 89,875,517,874 | depends on density | ||
| Deuterium–tritium fusion | 576,000,000[1] | |||
| Uranium-235 fissile isotope | 144,000,000[1] | 1,500,000,000 | ||
| Natural uranium (99.3% U-238, 0.7% U-235) in fast breeder reactor | 86,000,000 | |||
| Reactor-grade uranium (3.5% U-235) in light-water reactor | 3,456,000 | 35% | ||
| Pu-238 α-decay | 2,200,000 | |||
| Hf-178m2 isomer | 1,326,000 | 17,649,060 | ||
| Natural uranium (0.7% U235) in light-water reactor | 443,000 | 35% | ||
| Ta-180m isomer | 41,340 | 689,964 | ||
| Metallic hydrogen (recombination energy) | 216[2] | |||
| Specific orbital energy of Low Earth orbit (approximate) | 33.0 | |||
| Beryllium + Oxygen | 23.9[3] | |||
| Lithium + Fluorine | 23.75 | |||
| Octaazacubane potential explosive | 22.9[4] | |||
| Hydrogen + Oxygen | 13.4[5] | |||
| Gasoline + Oxygen –> Derived from Gasoline | 13.3 | |||
| Dinitroacetylene explosive - computed | 9.8 | |||
| Octanitrocubane explosive | 8.5[6] | 16.9[7] | ||
| Tetranitrotetrahedrane explosive - computed | 8.3 | |||
| Heptanitrocubane explosive - computed | 8.2 | |||
| Sodium (reacted with chlorine) | 7.0349 | |||
| Hexanitrobenzene explosive | 7[8] | |||
| Tetranitrocubane explosive - computed | 6.95 | |||
| Ammonal (Al+NH4NO3 oxidizer) | 6.9 | 12.7 | ||
| Tetranitromethane + hydrazine bipropellant - computed | 6.6 | |||
| Nitroglycerin | 6.38[9] | 10.2[10] | ||
| ANFO-ANNM | 6.26 | |||
| battery, Lithium–air | 6.12 | |||
| Octogen (HMX) | 5.7[9] | 10.8[11] | ||
| TNT[12] | 4.610 | 6.92 | ||
| Copper Thermite (Al + CuO as oxidizer) | 4.13 | 20.9 | ||
| Thermite (powder Al + Fe2O3 as oxidizer) | 4.00 | 18.4 | ||
| Hydrogen peroxide decomposition (as monopropellant) | 2.7 | 3.8 | ||
| battery, Lithium-ion nanowire | 2.54 | 95%[clarification needed][13] | ||
| battery, Lithium Thionyl Chloride (LiSOCl2)[14] | 2.5 | |||
| Water 220.64 bar, 373.8 °C [clarification needed] | 1.968 | 0.708 | ||
| Kinetic energy penetrator [clarification needed] | 1.9 | 30 | ||
| battery, Lithium–Sulfur[15] | 1.80[16] | 1.26 | ||
| battery, Fluoride-ion | 1.7 | 2.8 | ||
| battery, Hydrogen closed cycle H fuel cell[17] | 1.62 | |||
| Hydrazine decomposition (as monopropellant) | 1.6 | 1.6 | ||
| Ammonium nitrate decomposition (as monopropellant) | 1.4 | 2.5 | ||
| Thermal Energy Capacity of Molten Salt | 1 | 98%[18] | ||
| Molecular spring approximate | 1 | |||
| battery, Lithium–Manganese[19][20] | 0.83-1.01 | 1.98-2.09 | ||
| battery, Sodium–Sulfur | 0.72[21] | 1.23 | 85%[22] | |
| battery, Lithium-ion[23][24] | 0.46-0.72 | 0.83-3.6[25] | 95%[26] | |
| battery, Sodium–Nickel Chloride, High Temperature | 0.56 | |||
| battery, Zinc–manganese (alkaline), long life design[19][23] | 0.4-0.59 | 1.15-1.43 | ||
| battery, Silver-oxide[19] | 0.47 | 1.8 | ||
| Flywheel | 0.36-0.5[27][28] | |||
| 5.56 × 45 mm NATO bullet muzzle energy density[clarification needed] | 0.4 | 3.2 | ||
| battery, Nickel–metal hydride (NiMH), low power design as used in consumer batteries[29] | 0.4 | 1.55 | ||
| Liquid Nitrogen | 0.349 | |||
| Water – Enthalpy of Fusion | 0.334 | 0.334 | ||
| battery, Zinc–Bromine flow (ZnBr)[30] | 0.27 | |||
| battery, Nickel–metal hydride (NiMH), High-Power design as used in cars[31] | 0.250 | 0.493 | ||
| battery, Nickel–Cadmium (NiCd)[23] | 0.14 | 1.08 | 80%[26] | |
| battery, Zinc–Carbon[23] | 0.13 | 0.331 | ||
| battery, Lead–acid[23] | 0.14 | 0.36 | ||
| battery, Vanadium redox | 0.09 | 0.1188 | 70-75% | |
| battery, Vanadium–Bromide redox | 0.18 | 0.252 | 80%–90%[32] | |
| Capacitor Ultracapacitor | 0.0199[33] | 0.050 | ||
| Capacitor Supercapacitor | 0.01 | 80%–98.5%[34] | 39%–70%[34] | |
| Superconducting magnetic energy storage | 0.008[35] | >95% | ||
| Capacitor | 0.002[36] | |||
| Neodymium magnet | 0.003[37] | |||
| Ferrite magnet | 0.0003[37] | |||
| Spring power (clock spring), torsion spring | 0.0003[38] | 0.0006 | ||
| Storage type | Energy density by mass (MJ/kg) | Energy density by volume (MJ/L) | Peak recovery efficiency % | Practical recovery efficiency % |
Notes
- ↑ 1.0 1.1 Prelas, Mark (2015). Nuclear-Pumped Lasers. Springer. p. 135. ISBN 978-3-319-19845-3. https://books.google.com/books?id=Hmn_CgAAQBAJ&pg=PA135.
- ↑ Silvera, Isaac F; Cole, John W (2010-03-01). "Metallic hydrogen: The most powerful rocket fuel yet to exist". Journal of Physics: Conference Series 215 (1). doi:10.1088/1742-6596/215/1/012194. ISSN 1742-6596. Bibcode: 2010JPhCS.215a2194S. https://iopscience.iop.org/article/10.1088/1742-6596/215/1/012194.
- ↑ Cosgrove, Lee A.; Snyder, Paul E. (2002-05-01). "The Heat of Formation of Beryllium Oxide1". Journal of the American Chemical Society 75 (13): 3102–3103. doi:10.1021/ja01109a018.
- ↑ Glukhovtsev, Mikhail N.; Jiao, Haijun; Schleyer, Paul von Ragué (1996-05-28). "Besides N2, What Is the Most Stable Molecule Composed Only of Nitrogen Atoms?†". Inorganic Chemistry 35 (24): 7124–7133. doi:10.1021/ic9606237. PMID 11666896.
- ↑ Miller, Catherine (1 February 2021). "Introduction to Rocket Propulsion". https://www.cs.middlebury.edu/~cm2/personal-website/lecture_notes/lecture6.pdf.
- ↑ Wiley Interscience
- ↑ Octanitrocubane
- ↑ Wiley Interscience
- ↑ 9.0 9.1 "Chemical Explosives". Fas.org. 2008-05-30. http://www.fas.org/man/dod-101/navy/docs/es310/chemstry/chemstry.htm.
- ↑ Nitroglycerin
- ↑ HMX
- ↑ Kinney, G.F.; K.J. Graham (1985). Explosive shocks in air. Springer-Verlag. ISBN 978-3-540-15147-0.
- ↑ "Nanowire battery can hold 10 times the charge of existing lithium-ion battery". News-service.stanford.edu. 2007-12-18. http://news-service.stanford.edu/news/2008/january9/nanowire-010908.html.
- ↑ "Lithium Thionyl Chloride Batteries". Nexergy. http://www.nexergy.com/lithium-thionyl-chloride.htm.
- ↑ "Lithium Sulfur Rechargeable Battery Data Sheet". Sion Power, Inc.. 2005-09-28. http://www.sionpower.com/pdf/sion_product_spec.pdf.
- ↑ Kolosnitsyn, V.S.; E.V. Karaseva (2008). "Lithium-sulfur batteries: Problems and solutions". Russian Journal of Electrochemistry 44 (5): 506–509. doi:10.1134/s1023193508050029.
- ↑ "The Unitized Regenerative Fuel Cell". Llnl.gov. 1994-12-01. http://www.llnl.gov/str/Mitlit.html.
- ↑ "Technology". SolarReserve. http://www.solar-reserve.com/technology.html.
- ↑ 19.0 19.1 19.2 "ProCell Lithium battery chemistry". Duracell. http://www.duracell.com/Procell/chemistries/lithium.asp.
- ↑ "Properties of non-rechargeable lithium batteries". corrosion-doctors.org. http://www.corrosion-doctors.org/PrimBatt/table2.htm.
- ↑ "New battery could change world, one house at a time". Heraldextra.com. 2009-04-04. http://www.heraldextra.com/news/article_b0372fd8-3f3c-11de-ac77-001cc4c002e0.html.
- ↑ Kita, A.; Misaki, H.; Nomura, E.; Okada, K. (August 1984). "Energy Citations Database (ECD) - - Document #5960185". Proc., Intersoc. Energy Convers. Eng. Conf.; (United States) (Osti.gov) 2.
- ↑ 23.0 23.1 23.2 23.3 23.4 "Battery energy storage in various battery types". AllAboutBatteries.com. http://www.allaboutbatteries.com/Battery-Energy.html.
- ↑ A typically available lithium-ion cell with an Energy Density of 201 wh/kg "Li-Ion 18650 Cylindrical Cell 3.6V 2600mAh - Highest Energy Density Cell in Market (LC-18650H4) - LC-18650H4". http://www.batteryspace.com/index.asp?PageAction=VIEWPROD&ProdID=2763.
- ↑ "Lithium Batteries". http://www.globalspec.com/Specifications/Electrical_Electronic_Components/Batteries/Lithium_Batteries.
- ↑ 26.0 26.1 Justin Lemire-Elmore (2004-04-13). "The Energy Cost of Electric and Human-Powered Bicycles". p. 7. http://www.ebikes.ca/sustainability/Ebike_Energy.pdf. "Table 3: Input and Output Energy from Batteries"
- ↑ "Storage Technology Report, ST6 Flywheel". http://www.itpower.co.uk/investire/pdfs/flywheelrep.pdf.
- ↑ "Next-gen Of Flywheel Energy Storage". Product Design & Development. http://www.pddnet.com/article-next-gen-of-flywheel-energy-storage/.
- ↑ "Advanced Materials for Next Generation NiMH Batteries, Ovonic, 2008". http://www.ovonic.com/PDFs/ovonic-materials/Ovonic-Fetcenko-2008-Wolsky-Seminar.pdf.
- ↑ "ZBB Energy Corp". http://www.zbbenergy.com/technology.htm. "75 to 85 watt-hours per kilogram"
- ↑ High Energy Metal Hydride Battery
- ↑ "Microsoft Word - V-FUEL COMPANY AND TECHNOLOGY SHEET 2008.doc". http://www.vfuel.com.au/infosheet.pdf.
- ↑ "Maxwell Technologies: Ultracapacitors - BCAP3000". Maxwell.com. http://maxwell.com/ultracapacitors/products/large-cell/bcap3000.asp.
- ↑ 34.0 34.1 Zdenek, Cerovský; Pavel, Mindl. "Hybrid drive with super-capacitor energy storage". http://www2.fs.cvut.cz/web/fileadmin/documents/12241-BOZEK/publikace/2004/Sup-Cap-Energy-Storage.pdf.
- ↑ [1]
- ↑ "Department of Computing". http://www.doc.ic.ac.uk/~mpj01/ise2grp/energystorage_report/node9.html.
- ↑ 37.0 37.1 Rahman, M.; Slemon, G. (September 1985). "Promising applications of neodymium boron Iron magnets in electrical machines" (in en). IEEE Transactions on Magnetics 21 (5): 1712–1716. doi:10.1109/TMAG.1985.1064113. ISSN 0018-9464. Bibcode: 1985ITM....21.1712R. http://www.askmar.com/Magnets/Promising%20Magnet%20Applications.pdf.
- ↑ "Garage Door Springs". Garagedoor.org. http://garagedoor.org/residential/torsion-springs.php.
