List of definite integrals

From HandWiki
Short description: none

In mathematics, the definite integral

abf(x)dx

is the area of the region in the xy-plane bounded by the graph of f, the x-axis, and the lines x = a and x = b, such that area above the x-axis adds to the total, and that below the x-axis subtracts from the total.

The fundamental theorem of calculus establishes the relationship between indefinite and definite integrals and introduces a technique for evaluating definite integrals.

If the interval is infinite the definite integral is called an improper integral and defined by using appropriate limiting procedures. for example:

af(x)dx=limb[abf(x)dx]

A constant, such pi, that may be defined by the integral of an algebraic function over an algebraic domain is known as a period.

The following is a list of some of the most common or interesting definite integrals. For a list of indefinite integrals see List of indefinite integrals.

Definite integrals involving rational or irrational expressions

0dx1+xp=π/psin(π/p)for (p)>1
0xp1dx1+x=πsin(pπ)for 0<p<1
0xmdxxn+an=πamn+1nsin(m+1nπ)for 0<m+1<n
0xmdx1+2xcosβ+x2=πsin(mπ)sin(mβ)sin(β)
0adxa2x2=π2
0aa2x2dx=πa24
0axm(anxn)pdx=am+1+npΓ(m+1n)Γ(p+1)nΓ(m+1n+p+1)
0xmdx(xn+an)r=(1)r1πam+1nrΓ(m+1n)nsin(m+1nπ)(r1)!Γ(m+1nr+1)for n(r2)<m+1<nr

Definite integrals involving trigonometric functions

0πsin(mx)sin(nx)dx={0if mnπ2if m=nfor m,n positive integers
0πcos(mx)cos(nx)dx={0if mnπ2if m=nfor m,n positive integers
0πsin(mx)cos(nx)dx={0if m+n even2mm2n2if m+n oddfor m,n integers.
0π2sin2(x)dx=0π2cos2(x)dx=π4
0π2sin2m(x)dx=0π2cos2m(x)dx=1×3×5××(2m1)2×4×6××2mπ2for m=1,2,3
0π2sin2m+1(x)dx=0π2cos2m+1(x)dx=2×4×6××2m1×3×5××(2m+1)for m=1,2,3
0π2sin2p1(x)cos2q1(x)dx=Γ(p)Γ(q)2Γ(p+q)=12B(p,q)
0sin(px)xdx={π2if p>00if p=0π2if p<0 (see Dirichlet integral)
0sinpxcosqxx dx={0 if q>p>0π2 if 0<q<pπ4 if p=q>0
0sinpxsinqxx2 dx={πp2 if 0<pqπq2 if 0<qp
0sin2pxx2 dx=πp2
01cospxx2 dx=πp2
0cospxcosqxx dx=lnqp
0cospxcosqxx2 dx=π(qp)2
0cosmxx2+a2 dx=π2aema
0xsinmxx2+a2 dx=π2ema
0sinmxx(x2+a2) dx=π2a2(1ema)
02πdxa+bsinx=2πa2b2
02πdxa+bcosx=2πa2b2
0π2dxa+bcosx=cos1(ba)a2b2
02πdx(a+bsinx)2=02πdx(a+bcosx)2=2πa(a2b2)3/2
02πdx12acosx+a2=2π1a2for 0<a<1
0πxsinx dx12acosx+a2={πaln|1+a|if |a|<1πaln|1+1a|if |a|>1
0πcosmx dx12acosx+a2=πam1a2for a2<1 , m=0,1,2,
0sinax2 dx=0cosax2=12π2a
0sinaxn=1na1/nΓ(1n)sinπ2nfor n>1
0cosaxn=1na1/nΓ(1n)cosπ2nfor n>1
0sinxx dx=0cosxx dx=π2
0sinxxp dx=π2Γ(p)sin(pπ2)for 0<p<1
0cosxxp dx=π2Γ(p)cos(pπ2)for 0<p<1
0sinax2cos2bx dx=12π2a(cosb2asinb2a)
0cosax2cos2bx dx=12π2a(cosb2a+sinb2a)

Definite integrals involving exponential functions

0xexdx=12π (see also Gamma function)
0eaxcosbxdx=aa2+b2
0eaxsinbxdx=ba2+b2
0eaxsinbxxdx=tan1ba
0eaxebxxdx=lnba
0eaxcos(bx)xdx=lnba
0eax2dx=12πafor a>0 (the Gaussian integral)
0eax2cosbxdx=12πae(b24a)
0e(ax2+bx+c)dx=12πae(b24ac4a)erfcb2a, where erfc(p)=2πpex2dx
e(ax2+bx+c) dx=πae(b24ac4a)
0xneax dx=Γ(n+1)an+1
0x2eax2dx=14πa3for a>0
0x2neax2dx=2n12a0x2(n1)eax2dx=(2n1)!!2n+1πa2n+1=(2n)!n!22n+1πa2n+1for a>0 , n=1,2,3 (where !! is the double factorial)
0x3eax2dx=12a2for a>0
0x2n+1eax2dx=na0x2n1eax2dx=n!2an+1for a>0 , n=0,1,2
0xmeax2 dx=Γ(m+12)2a(m+12)
0e(ax2bx2) dx=12πae2ab
0xex1 dx=ζ(2)=π26
0xn1ex1 dx=Γ(n)ζ(n)
0xex+1 dx=112122+132142+=π212
0xnex+1 dx=n!(2n12n)ζ(n+1)
0sinmxe2πx1 dx=14cothm212m
0(11+xex) dxx=γ (where γ is Euler–Mascheroni constant)
0ex2exx dx=γ2
0(1ex1exx) dx=γ
0eaxebxxsecpx dx=12lnb2+p2a2+p2
0eaxebxxcscpx dx=tan1bptan1ap
0eax(1cosx)x2 dx=cot1aa2ln|a2+1a2|
ex2dx=π
x2(n+1)e12x2dx=(2n+1)!2nn!2πfor n=0,1,2,

Definite integrals involving logarithmic functions

01xm(lnx)ndx=(1)nn!(m+1)n+1for m>1,n=0,1,2,
1xm(lnx)ndx=(1)n+1n!(m+1)n+1for m<1,n=0,1,2,
01lnx1+xdx=π212
01lnx1xdx=π26
01ln(1+x)xdx=π212
01ln(1x)xdx=π26
0ln(a2+x2)b2+x2 dx=πbln(a+b)for a,b>0
0lnxx2+a2 dx=πlna2afor a>0

Definite integrals involving hyperbolic functions

0sinaxsinhbx dx=π2btanhaπ2b

0cosaxcoshbx dx=π2b1coshaπ2b

0xsinhax dx=π24a2

0x2n+1sinhax dx=c2n+1(πa)2(n+1),c2n+1=(1)n2(12k=0n1(1)k(2n+12k+1)c2k+1),c1=14

01coshax dx=π2a

0x2ncoshax dx=d2n(πa)2n+1,d2n=(1)n2(14nk=0n1(1)k(2n2k)d2k),d0=12

0f(ax)f(bx)x dx=(limx0f(x)limxf(x))ln(ba) holds if the integral exists and f(x) is continuous.

See also

References

  • "Derivation of Logarithmic and Logarithmic Hyperbolic Tangent Integrals Expressed in Terms of Special Functions". Mathematics 8 (687): 687. 2020. doi:10.3390/math8050687. 
  • "A Definite Integral Involving the Logarithmic Function in Terms of the Lerch Function". Mathematics 7 (1148): 1148. 2019. doi:10.3390/math7121148. 
  • "Definite Integral of Arctangent and Polylogarithmic Functions Expressed as a Series". Mathematics 7 (1099): 1099. 2019. doi:10.3390/math7111099. 
  • "Eigenschaften Einiger Bestimmten Integrale". Hof, K.K., Ed.. 1861. 
  • Mathematical handbook of formulas and tables (3rd ed.). McGraw-Hill. 2009. ISBN 978-0071548557. 
  • CRC standard mathematical tables and formulae (32nd ed.). CRC Press. 2003. ISBN 978-143983548-7. 
  • Abramowitz, Milton; Stegun, Irene Ann, eds (1983). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. LCCN 65-12253. ISBN 978-0-486-61272-0.