Mixed Poisson distribution

From HandWiki
mixed Poisson distribution
Notation [math]\displaystyle{ \operatorname{Pois}(\lambda) \, \underset{\lambda}\wedge \, \pi(\lambda) }[/math]
Parameters [math]\displaystyle{ \lambda\in (0, \infty) }[/math]
Support [math]\displaystyle{ k \in \mathbb{N}_0 }[/math]
pmf [math]\displaystyle{ \int\limits_0^\infty \frac{\lambda^k}{k!}e^{-\lambda} \,\,\pi(\lambda)\,\mathrm d\lambda }[/math]
Mean [math]\displaystyle{ \int\limits_0^\infty \lambda \,\,\pi(\lambda)\,d\lambda }[/math]
Variance [math]\displaystyle{ \int\limits_0^\infty (\lambda+(\lambda-\mu_\pi)^2) \,\,\pi(\lambda) \, d\lambda }[/math]
Skewness [math]\displaystyle{ \Bigl(\mu_\pi+\sigma_\pi^2\Bigr)^{-3/2} \,\Biggl[\int\limits_0^\infty[(\lambda-\mu_\pi)^3 + 3(\lambda-\mu_\pi)^2]\, \pi(\lambda) \, d{\lambda}+\mu_\pi\Biggr] }[/math]
MGF [math]\displaystyle{ M_\pi(e^t-1) }[/math], with [math]\displaystyle{ M_\pi }[/math] the MGF of π
CF [math]\displaystyle{ M_\pi(e^{it}-1) }[/math]
PGF [math]\displaystyle{ M_\pi(z-1) }[/math]

A mixed Poisson distribution is a univariate discrete probability distribution in stochastics. It results from assuming that the conditional distribution of a random variable, given the value of the rate parameter, is a Poisson distribution, and that the rate parameter itself is considered as a random variable. Hence it is a special case of a compound probability distribution. Mixed Poisson distributions can be found in actuarial mathematics as a general approach for the distribution of the number of claims and is also examined as an epidemiological model.[1] It should not be confused with compound Poisson distribution or compound Poisson process.[2]

Definition

A random variable X satisfies the mixed Poisson distribution with density π(λ) if it has the probability distribution[3]

[math]\displaystyle{ \operatorname{P}(X=k) = \int_0^\infty \frac{\lambda^k}{k!}e^{-\lambda} \,\,\pi(\lambda)\,\mathrm d\lambda. }[/math]

If we denote the probabilities of the Poisson distribution by qλ(k), then

[math]\displaystyle{ \operatorname{P}(X=k) = \int_0^\infty q_\lambda(k) \,\,\pi(\lambda)\,\mathrm d\lambda. }[/math]

Properties

In the following let [math]\displaystyle{ \mu_\pi=\int\limits_0^\infty \lambda \,\,\pi(\lambda) \, d\lambda\, }[/math] be the expected value of the density [math]\displaystyle{ \pi(\lambda)\, }[/math] and [math]\displaystyle{ \sigma_\pi^2 = \int\limits_0^\infty (\lambda-\mu_\pi)^2 \,\,\pi(\lambda) \, d\lambda\, }[/math] be the variance of the density.

Expected value

The expected value of the mixed Poisson distribution is

[math]\displaystyle{ \operatorname{E}(X) = \mu_\pi. }[/math]

Variance

For the variance one gets[3]

[math]\displaystyle{ \operatorname{Var}(X) = \mu_\pi+\sigma_\pi^2. }[/math]

Skewness

The skewness can be represented as

[math]\displaystyle{ \operatorname{v}(X) = \Bigl(\mu_\pi+\sigma_\pi^2\Bigr)^{-3/2} \,\Biggl[\int_0^\infty(\lambda-\mu_\pi)^3\,\pi(\lambda)\,d{\lambda}+\mu_\pi\Biggr]. }[/math]

Characteristic function

The characteristic function has the form

[math]\displaystyle{ \varphi_X(s) = M_\pi(e^{is}-1).\, }[/math]

Where [math]\displaystyle{ M_\pi }[/math] is the moment generating function of the density.

Probability generating function

For the probability generating function, one obtains[3]

[math]\displaystyle{ m_X(s) = M_\pi(s-1).\, }[/math]

Moment-generating function

The moment-generating function of the mixed Poisson distribution is

[math]\displaystyle{ M_X(s) = M_\pi(e^s-1).\, }[/math]

Examples

Theorem — Compounding a Poisson distribution with rate parameter distributed according to a gamma distribution yields a negative binomial distribution.[3]

Theorem — Compounding a Poisson distribution with rate parameter distributed according to a exponential distribution yields a geometric distribution.

Table of mixed Poisson distributions

mixing distribution mixed Poisson distribution[4]
gamma negative binomial
exponential geometric
inverse Gaussian Sichel
Poisson Neyman
generalized inverse Gaussian Poisson-generalized inverse Gaussian
generalized gamma Poisson-generalized gamma
generalized Pareto Poisson-generalized Pareto
inverse-gamma Poisson-inverse gamma
log-normal Poisson-log-normal
Lomax Poisson–Lomax
Pareto Poisson–Pareto
Pearson’s family of distributions Poisson–Pearson family
truncated normal Poisson-truncated normal
uniform Poisson-uniform
shifted gamma Delaporte
beta with specific parameter values Yule

Literature

  • Jan Grandell: Mixed Poisson Processes. Chapman & Hall, London 1997, ISBN 0-412-78700-8 .
  • Tom Britton: Stochastic Epidemic Models with Inference. Springer, 2019, doi:10.1007/978-3-030-30900-8

References

  1. Willmot, Gordon E.; Lin, X. Sheldon (2001), "Mixed Poisson distributions", Lundberg Approximations for Compound Distributions with Insurance Applications, Lecture Notes in Statistics (New York, NY: Springer New York) 156: pp. 37–49, doi:10.1007/978-1-4613-0111-0_3, ISBN 978-0-387-95135-5, http://link.springer.com/10.1007/978-1-4613-0111-0_3, retrieved 2022-07-08 
  2. Willmot, Gord (1986). "Mixed Compound Poisson Distributions" (in en). ASTIN Bulletin 16 (S1): S59–S79. doi:10.1017/S051503610001165X. ISSN 0515-0361. 
  3. 3.0 3.1 3.2 3.3 Willmot, Gord (2014-08-29). "Mixed Compound Poisson Distributions". Astin Bulletin 16: 5–7. doi:10.1017/S051503610001165X. 
  4. Karlis, Dimitris; Xekalaki, Evdokia (2005). "Mixed Poisson Distributions". International Statistical Review 73 (1): 35–58. doi:10.1111/j.1751-5823.2005.tb00250.x. ISSN 0306-7734. https://www.jstor.org/stable/25472639.