Physics:Bismuth-209

From HandWiki
Short description: Isotope of bismuth

Bismuth-209 (209Bi) is the isotope of bismuth with the longest known half-life of any radioisotope that undergoes α-decay (alpha decay). It has 83 protons and a magic number[2] of 126 neutrons,[2] and an atomic mass of 208.9803987 amu (atomic mass units). Primordial bismuth consists entirely of this isotope.

Decay properties

Bismuth-209 was long thought to have the heaviest stable nucleus of any element, but in 2003, a research team at the Institut d’Astrophysique Spatiale in Orsay, France, discovered that 209Bi undergoes alpha decay with a half-life of approximately 19 exayears (1.9×1019, approximately 19 quintillion years),[3][4] over a billion times longer than the current estimated age of the universe.[5] The heaviest nucleus considered to be stable is now lead-208 and the heaviest stable monoisotopic element is gold as the 197Au isotope.

Theory had previously predicted a half-life of 4.6×1019 years. It had been suspected to be radioactive for a long time.[6] The decay event produces a 3.14 MeV alpha particle and converts the atom to thallium-205.[3][4]

Bismuth-209 occurs in the neptunium series decay chain.

Bismuth-209 will eventually form 205Tl if unperturbed:

20983Bi20581Tl + 42He[7]

If perturbed, it would join in lead-bismuth neutron capture cycle from lead-206/207/208 to bismuth-209, despite low capture cross sections. Even thallium-205, the decay product of bismuth-209, reverts to lead when fully ionized.[8]

Due to its extraordinarily long half-life, for nearly all applications 209Bi can still be treated as if it were non-radioactive. Its radioactivity is much less than that of human flesh, so it poses no meaningful hazard from radiation. Although 209Bi holds the half-life record for alpha decay, bismuth does not have the longest half-life of any radionuclide to be found experimentally—this distinction belongs to tellurium-128 (128Te) with a half-life estimated at 7.7 × 1024 years by double β-decay (double beta decay).[9][10][11]

The half-life of bismuth-209 was confirmed in 2012 by an Italian team in Gran Sasso who reported (2.01±0.08)×1019 years. They also reported an even longer half-life for alpha decay of bismuth-209 to the first excited state of thallium-205 (at 204 keV), was estimated to be 1.66×1021 years.[12] Even though this value is shorter than the measured half-life of tellurium-128, both alpha decays of bismuth-209 hold the record of the thinnest natural line widths of any measurable physical excitation, estimated respectively at ΔΕ~5.5×10−43 eV and ΔΕ~1.3×10−44 eV in application of the uncertainty principle of Heisenberg[13] (double beta decay would produce energy lines only in neutrinoless transitions, which has not been observed yet).

Applications

Because primordial bismuth is entirely bismuth-209, bismuth-209 is used for all of the normal applications attributed to bismuth, such as being used as a replacement for lead,[14][15] in cosmetics,[16][17] in paints,[18] and in several medicines such as Pepto-Bismol.[5][19][20] Alloys containing bismuth-209 such as bismuth bronze have been used for thousands of years.[21]

Synthesis of other elements

210Po can be manufactured by bombarding 209Bi with neutrons in a nuclear reactor.[22] Only around 100 grams of 210Po are produced each year.[23][22] 209Po and 208Po can be made through the proton bombardment of 209Bi in a cyclotron.[24] Astatine can also be produced by bombarding forms of 209Bi with alpha particles.[25][26][27] Traces of 209Bi have also been used to create gold in nuclear reactors.[28][29]

209Bi has been used as a target for the creation of several isotopes of superheavy elements such as dubnium,[30][31][32][33] bohrium,[30][34] meitnerium,[35][36][37] roentgenium,[38][39][40] and nihonium.[41][42][43]

Formation

Primordial

Bismuth-209 is created in the final part of the s-process.[lower-alpha 1]

In the red giant stars of the asymptotic giant branch, the s-process (slow process) is ongoing to produce bismuth-209 and polonium-210 by neutron capture as the heaviest elements to be formed,[44] and the latter quickly decays.[44] All elements heavier than it are formed in the r-process, or rapid process, which occurs during the first fifteen minutes of supernovas.[45][44] Bismuth-209 is also created during the r-process.[44]

Radiogenic

Some bismuth-209 was created radiogenically as a result of the neptunium series decay chain.[46] Neptunium-237 is an extinct radionuclide, but it can be found in traces in uranium ores because of neutron capture reactions.[46][47] Americium-241, which is used in smoke detectors,[48] decays to neptunium-237.

See also

Notes

  1. Red horizontal lines with a circle in their right ends represent neutron captures; blue arrows pointing up-left represent beta decays; green arrows pointing down-left represent alpha decays; cyan/light-green arrows pointing down-right represent electron captures.
Lighter:
bismuth-208
Bismuth-209 is an
isotope of bismuth
Heavier:
bismuth-210
Decay product of:
astatine-213 (α)
'polonium-209 (β+)
lead-209 (β)'
Decay chain
of bismuth-209
Decays to:
'thallium-205 (α)'

References

  1. Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017). "The NUBASE2016 evaluation of nuclear properties". Chinese Physics C 41 (3): 030001. doi:10.1088/1674-1137/41/3/030001. Bibcode2017ChPhC..41c0001A. https://www-nds.iaea.org/amdc/ame2016/NUBASE2016.pdf. 
  2. Jump up to: 2.0 2.1 Blank, B.; Regan, P.H. (2000). "Magic and doubly-magic nuclei". Nuclear Physics News 10 (4): 20–27. doi:10.1080/10506890109411553. https://www.researchgate.net/publication/232899048. 
  3. Jump up to: 3.0 3.1 Dumé, Belle (2003-04-23). "Bismuth breaks half-life record for alpha decay". Physicsweb. http://physicsworld.com/cws/article/news/2003/apr/23/bismuth-breaks-half-life-record-for-alpha-decay. 
  4. Jump up to: 4.0 4.1 Marcillac, Pierre de; Noël Coron; Gérard Dambier; Jacques Leblanc; Jean-Pierre Moalic (April 2003). "Experimental detection of α-particles from the radioactive decay of natural bismuth". Nature 422 (6934): 876–878. doi:10.1038/nature01541. PMID 12712201. Bibcode2003Natur.422..876D. 
  5. Jump up to: 5.0 5.1 Kean, Sam (2011). The Disappearing Spoon (and other true tales of madness, love, and the history of the world from the Periodic Table of Elements). New York/Boston: Back Bay Books. pp. 158–160. ISBN 978-0-316-051637. 
  6. Carvalho, H. G.; Penna, M. (1972). "Alpha-activity of 209Bi". Lettere al Nuovo Cimento 3 (18): 720. doi:10.1007/BF02824346. 
  7. "Isotope data for americium-241 in the Periodic Table". http://periodictable.com/Isotopes/095.241/index.full.html. 
  8. Takahashi, K; Boyd, R. N.; Mathews, G. J.; Yokoi, K. (October 1987). "Bound-state beta decay of highly ionized atoms". Physical Review C 36 (4): 1522–1528. doi:10.1103/PhysRevC.36.1522. ISSN 0556-2813. OCLC 1639677. PMID 9954244. Bibcode1987PhRvC..36.1522T. https://www.researchgate.net/publication/13335547. Retrieved 2016-11-20. 
  9. "Noble Gas Research". http://presolar.wustl.edu/work/noblegas.html.  Tellurium-128 information and half-life. Accessed July 14, 2009.
  10. Audi, G.; Bersillon, O.; Blachot, J.; Wapstra, A. H. (2003). "The NUBASE Evaluation of Nuclear and Decay Properties". Nuclear Physics A (Atomic Mass Data Center) 729 (1): 3–128. doi:10.1016/j.nuclphysa.2003.11.001. Bibcode2003NuPhA.729....3A. http://hal.in2p3.fr/in2p3-00014184. 
  11. "WWW Table of Radioactive Isotopes: Tellurium". Nuclear Science Division, Lawrence Berkeley National Laboratory. 2008. http://ie.lbl.gov/toi/nuclide.asp?iZA=520128. 
  12. J.W. Beeman (2012). "First Measurement of the Partial Widths of 209Bi Decay to the Ground and to the First Excited States". Physical Review Letters 108 (6): 062501. doi:10.1103/PhysRevLett.108.062501. PMID 22401058. 
  13. "Particle lifetimes from the uncertainty principle". http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/parlif.html. 
  14. Hopper KD; King SH; Lobell ME; TenHave TR; Weaver JS (1997). "The breast: inplane x-ray protection during diagnostic thoracic CT—shielding with bismuth radioprotective garments". Radiology 205 (3): 853–8. doi:10.1148/radiology.205.3.9393547. PMID 9393547. 
  15. Lohse, Joachim; Zangl, Stéphanie; Groß, Rita; Gensch, Carl-Otto; Deubzer, Otmar (September 2007). "Adaptation to Scientific and Technical Progress of Annex II Directive 2000/53/EC". European Commission. http://ec.europa.eu/environment/waste/pdf/description_layout.pdf. 
  16. Maile, Frank J.; Pfaff, Gerhard; Reynders, Peter (2005). "Effect pigments—past, present and future". Progress in Organic Coatings 54 (3): 150. doi:10.1016/j.porgcoat.2005.07.003. 
  17. Pfaff, Gerhard (2008). Special effect pigments: Technical basics and applications. Vincentz Network GmbH. p. 36. ISBN 978-3-86630-905-0. https://books.google.com/books?id=Q1Pc0aY-vg4C&pg=PA36. 
  18. B. Gunter "Inorganic Colored Pigments” in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2012.
  19. "Investigational treatment options in microscopic colitis". Expert Opinion on Investigational Drugs 17 (12): 1829–37. December 2008. doi:10.1517/13543780802514500. PMID 19012499. 
  20. Merck Index, 11th Edition, 1299
  21. Gordon, Robert B.; Rutledge, John W. (1984). "Bismuth Bronze from Machu Picchu, Peru". Science (American Association for the Advancement of Science) 223 (4636): 585–586. doi:10.1126/science.223.4636.585. PMID 17749940. Bibcode1984Sci...223..585G. 
  22. Jump up to: 22.0 22.1 Roessler, G. (2007). "Why 210Po?". Health Physics News (Health Physics Society) 35 (2). https://hps.org/documents/polonium_210_story.pdf. Retrieved 2019-06-20. 
  23. "Swiss study: Polonium found in Arafat's bones". Al Jazeera. http://www.aljazeera.com/investigations/killing-arafat/swiss-study-polonium-found-arafats-bones-201311522578803512.html. 
  24. Carvalho, F.; Fernandes, S.; Fesenko, S.; Holm, E.; Howard, B.; Martin, P.; Phaneuf, P.; Porcelli, D. et al. (2017). The Environmental Behaviour of Polonium. Technical reports series. 484. Vienna: International Atomic Energy Agency. p. 22. ISBN 978-92-0-112116-5. 
  25. Barton, G. W.; Ghiorso, A.; Perlman, I. (1951). "Radioactivity of Astatine Isotopes". Physical Review 82 (1): 13–19. doi:10.1103/PhysRev.82.13. Bibcode1951PhRv...82...13B. https://escholarship.org/uc/item/7q84d634.  (Subscription content?)
  26. Larsen, R. H.; Wieland, B. W.; Zalutsky, M. R. J. (1996). "Evaluation of an Internal Cyclotron Target for the Production of 211At via the 209Bi (α,2n)211At reaction". Applied Radiation and Isotopes 47 (2): 135–143. doi:10.1016/0969-8043(95)00285-5. PMID 8852627. 
  27. Nefedov, V. D.; Norseev, Yu. V.; Toropova, M. A.; Khalkin, Vladimir A. (1968). "Astatine". Russian Chemical Reviews 37 (2): 87–98. doi:10.1070/RC1968v037n02ABEH001603. Bibcode1968RuCRv..37...87N.  (Subscription content?)
  28. Aleklett, K.; Morrissey, D.; Loveland, W.; McGaughey, P.; Seaborg, G. (1981). "Energy dependence of 209Bi fragmentation in relativistic nuclear collisions". Physical Review C 23 (3): 1044. doi:10.1103/PhysRevC.23.1044. Bibcode1981PhRvC..23.1044A. 
  29. Matthews, Robert (2 December 2001). "The Philosopher's Stone". The Daily Telegraph. https://www.telegraph.co.uk/education/4791069/The-Philosophers-Stone.html. 
  30. Jump up to: 30.0 30.1 Munzenberg; Hofmann, S.; Heßberger, F. P.; Reisdorf, W.; Schmidt, K. H.; Schneider, J. H. R.; Armbruster, P.; Sahm, C. C. et al. (1981). "Identification of element 107 by α correlation chains". Z. Phys. A 300 (1): 107–108. doi:10.1007/BF01412623. Bibcode1981ZPhyA.300..107M. 
  31. Hessberger, F. P.; Münzenberg, G.; Hofmann, S.; Agarwal, Y. K.; Poppensieker, K.; Reisdorf, W.; Schmidt, K.-H.; Schneider, J. R. H. et al. (1985). "The new isotopes 258105,257105,254Lr and 253Lr". Z. Phys. A 322 (4): 4. doi:10.1007/BF01415134. Bibcode1985ZPhyA.322..557H. 
  32. F. P. Hessberger; Hofmann, S.; Ackermann, D.; Ninov, V.; Leino, M.; Münzenberg, G.; Saro, S.; Lavrentev, A. et al. (2001). "Decay properties of neutron-deficient isotopes 256,257Db,255Rf, 252,253Lr". Eur. Phys. J. A 12 (1): 57–67. doi:10.1007/s100500170039. Bibcode2001EPJA...12...57H. http://www.edpsciences.org/articles/epja/abs/2001/09/epja1103/epja1103.html. 
  33. Leppänen, A.-P. (2005). Alpha-decay and decay-tagging studies of heavy elements using the RITU separator (PDF) (Thesis). University of Jyväskylä. pp. 83–100. ISBN 978-951-39-3162-9. ISSN 0075-465X.
  34. Nelson, S.; Gregorich, K.; Dragojević, I.; Garcia, M.; Gates, J.; Sudowe, R.; Nitsche, H. (2008). "Lightest Isotope of Bh Produced via the Bi209(Cr52,n)Bh260 Reaction". Physical Review Letters 100 (2): 22501. doi:10.1103/PhysRevLett.100.022501. PMID 18232860. Bibcode2008PhRvL.100b2501N. 
  35. Münzenberg, G. (1982). "Observation of one correlated α-decay in the reaction 58Fe on 209Bi→267109". Zeitschrift für Physik A 309 (1): 89–90. doi:10.1007/BF01420157. Bibcode1982ZPhyA.309...89M. 
  36. Münzenberg, G.; Hofmann, S.; Heßberger, F. P. et al. (1988). "New results on element 109". Zeitschrift für Physik A 330 (4): 435–436. doi:10.1007/BF01290131. Bibcode1988ZPhyA.330..435M. 
  37. Hofmann, S.; Heßberger, F. P.; Ninov, V. et al. (1997). "Excitation function for the production of 265108 and 266109". Zeitschrift für Physik A 358 (4): 377–378. doi:10.1007/s002180050343. Bibcode1997ZPhyA.358..377H. 
  38. Hofmann, S.; Ninov, V.; Heßberger, F. P.; Armbruster, P.; Folger, H.; Münzenberg, G.; Schött, H. J.; Popeko, A. G. et al. (1995). "The new element 111". Zeitschrift für Physik A 350 (4): 281–282. doi:10.1007/BF01291182. Bibcode1995ZPhyA.350..281H. 
  39. Hofmann, S.; Heßberger, F. P.; Ackermann, D.; Münzenberg, G.; Antalic, S.; Cagarda, P.; Kindler, B.; Kojouharova, J. et al. (2002). "New results on elements 111 and 112". The European Physical Journal A 14 (2): 147–157. doi:10.1140/epja/i2001-10119-x. Bibcode2002EPJA...14..147H. 
  40. Morita, K.; Morimoto, K. K.; Kaji, D.; Goto, S.; Haba, H.; Ideguchi, E.; Kanungo, R.; Katori, K. et al. (2004). "Status of heavy element research using GARIS at RIKEN". Nuclear Physics A 734: 101–108. doi:10.1016/j.nuclphysa.2004.01.019. Bibcode2004NuPhA.734..101M. 
  41. Morita, Kosuke; Morimoto, Kouji; Kaji, Daiya; Akiyama, Takahiro; Goto, Sin-Ichi; Haba, Hiromitsu; Ideguchi, Eiji; Kanungo, Rituparna et al. (2004). "Experiment on the Synthesis of Element 113 in the Reaction 209Bi(70Zn, n)278113". Journal of the Physical Society of Japan 73 (10): 2593–2596. doi:10.1143/JPSJ.73.2593. Bibcode2004JPSJ...73.2593M. 
  42. Barber, Robert C.; Karol, Paul J; Nakahara, Hiromichi; Vardaci, Emanuele; Vogt, Erich W. (2011). "Discovery of the elements with atomic numbers greater than or equal to 113 (IUPAC Technical Report)". Pure and Applied Chemistry 83 (7): 1485. doi:10.1351/PAC-REP-10-05-01. 
  43. K. Morita; Morimoto, Kouji; Kaji, Daiya; Haba, Hiromitsu; Ozeki, Kazutaka; Kudou, Yuki; Sumita, Takayuki; Wakabayashi, Yasuo et al. (2012). "New Results in the Production and Decay of an Isotope, 278113, of the 113th Element". Journal of the Physical Society of Japan 81 (10): 103201. doi:10.1143/JPSJ.81.103201. Bibcode2012JPSJ...81j3201M. 
  44. Jump up to: 44.0 44.1 44.2 44.3 Burbidge, E. M.; Burbidge, G. R.; Fowler, W. A.; Hoyle, F. (1957). "Synthesis of the Elements in Stars". Reviews of Modern Physics 29 (4): 547–650. doi:10.1103/RevModPhys.29.547. Bibcode1957RvMP...29..547B. 
  45. Chaisson, Eric, and Steve McMillan. Astronomy Today. 6th ed. San Francisco: Pearson Education, 2008.
  46. Jump up to: 46.0 46.1 Peppard, D. F.; Mason, G. W.; Gray, P. R.; Mech, J. F. (1952). "Occurrence of the (4n + 1) series in nature". Journal of the American Chemical Society 74 (23): 6081–6084. doi:10.1021/ja01143a074. https://digital.library.unt.edu/ark:/67531/metadc172698/m2/1/high_res_d/metadc172698.pdf. 
  47. C. R. Hammond (2004). The Elements, in Handbook of Chemistry and Physics (81st ed.). CRC press. ISBN 978-0-8493-0485-9. https://archive.org/details/crchandbookofche81lide. 
  48. "Smoke Detectors and Americium" (in en-au). Nuclear Issues Briefing Paper (Uranium Information Centre) 35. May 2002. http://www.uic.com.au/nip35.htm. Retrieved 2022-09-02.