Stericantitruncated 16-cell honeycomb

From HandWiki
Stericantitruncated 16-cell honeycomb
(No image)
Type Uniform 4-honeycomb
Schläfli symbol t0,1,2,4{3,3,4,3}
s2,3,4{3,4,3,3}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
4-face type

t0,1,2{3,3,4}
t0,1,3{4,3,3}
t0,1,2{4,3}x{}
t1{4,3}x{} {3}x{6}

Cell type
Face type
Vertex figure
Coxeter groups [math]\displaystyle{ {\tilde{F}}_4 }[/math], [3,4,3,3]
Properties Vertex transitive

In four-dimensional Euclidean geometry, the stericantitruncated 16-cell honeycomb is a uniform space-filling honeycomb.

Alternate names

  • Great cellirhombated icositetrachoric tetracomb (gicaricot)
  • Runcicantic hexadecachoric tetracomb

Related honeycombs

See also

Regular and uniform honeycombs in 4-space:

References

  • Coxeter, H.S.M. Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8 p. 296, Table II: Regular honeycombs
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • George Olshevsky, Uniform Panoploid Tetracombs, Manuscript (2006) (Complete list of 11 convex uniform tilings, 28 convex uniform honeycombs, and 143 convex uniform tetracombs) Model 121 (Wrongly named runcinated icositetrachoric honeycomb)
  • Klitzing, Richard. "4D Euclidean tesselations". https://bendwavy.org/klitzing/dimensions/flat.htm.  x3x3x4o3x - gicaricot - O130
Fundamental convex regular and uniform honeycombs in dimensions 2-9
Space Family [math]\displaystyle{ {\tilde{A}}_{n-1} }[/math] [math]\displaystyle{ {\tilde{C}}_{n-1} }[/math] [math]\displaystyle{ {\tilde{B}}_{n-1} }[/math] [math]\displaystyle{ {\tilde{D}}_{n-1} }[/math] [math]\displaystyle{ {\tilde{G}}_2 }[/math] / [math]\displaystyle{ {\tilde{F}}_4 }[/math] / [math]\displaystyle{ {\tilde{E}}_{n-1} }[/math]
E2 Uniform tiling {3[3]} δ3 3 3 Hexagonal
E3 Uniform convex honeycomb {3[4]} δ4 4 4
E4 Uniform 4-honeycomb {3[5]} δ5 5 5 24-cell honeycomb
E5 Uniform 5-honeycomb {3[6]} δ6 6 6
E6 Uniform 6-honeycomb {3[7]} δ7 7 7 222
E7 Uniform 7-honeycomb {3[8]} δ8 8 8 133331
E8 Uniform 8-honeycomb {3[9]} δ9 9 9 152251521
E9 Uniform 9-honeycomb {3[10]} δ10 10 10
En-1 Uniform (n-1)-honeycomb {3[n]} δn n n 1k22k1k21