Chemistry:5′-Phosphoribosylformylglycinamidine

From HandWiki
Revision as of 07:59, 6 March 2023 by Scavis2 (talk | contribs) (linkage)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
5′-Phosphoribosylformylglycin­amidine
Phosphoribosylformylglycinamidine.svg
Names
IUPAC name
[(2R,3S,4R,5R)-5-[(1-Amino-2-formamidoethylidene)amino]-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate
Other names
FGAM
Identifiers
3D model (JSmol)
ChemSpider
UNII
Properties
C8H16N3O8P
Molar mass 313.20 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

5′-Phosphoribosylformylglycinamidine (or FGAM) is a biochemical intermediate in the formation of purine nucleotides via inosine-5-monophosphate, and hence is a building block for DNA and RNA.[1][2] The vitamins thiamine[3][4] and cobalamin[5] also contain fragments derived from FGAM.[6]

The compound is biosynthesized from phosphoribosyl-N-formylglycineamide (FGAR) which is converted to an amidine by the action of phosphoribosylformylglycinamidine synthase (EC 6.3.5.3), transferring an amino group from glutamine in a reaction that also requires ATP:

FGAR + ATP + glutamine + H2O → FGAM + ADP + glutamate + Pi

The biosynthesis pathway next converts FGAM to 5-aminoimidazole ribotide (AIR) by the action of AIR synthetase (EC 6.3.3.1) which uses ATP to activate the terminal carbonyl group to attack by the nitrogen atom at the anomeric center:

FGAM + ATP → AIR + ADP + Pi + H+
AIR Synthetase.svg

See also

References

  1. R. Caspi (2009-01-13). "Pathway: 5-aminoimidazole ribonucleotide biosynthesis I". MetaCyc Metabolic Pathway Database. https://biocyc.org/META/NEW-IMAGE?type=PATHWAY&object=PWY-6121. 
  2. Gupta, Rani; Gupta, Namita (2021). "Nucleotide Biosynthesis and Regulation". Fundamentals of Bacterial Physiology and Metabolism. pp. 525–554. doi:10.1007/978-981-16-0723-3_19. ISBN 978-981-16-0722-6. 
  3. R. Caspi (2011-09-14). "Pathway: superpathway of thiamine diphosphate biosynthesis I". MetaCyc Metabolic Pathway Database. https://biocyc.org/META/NEW-IMAGE?type=PATHWAY&object=THISYN-PWY&detail-level=2#. 
  4. Chatterjee, Abhishek; Hazra, Amrita B.; Abdelwahed, Sameh; Hilmey, David G.; Begley, Tadhg P. (2010). "A "Radical Dance" in Thiamin Biosynthesis: Mechanistic Analysis of the Bacterial Hydroxymethylpyrimidine Phosphate Synthase". Angewandte Chemie International Edition 49 (46): 8653–8656. doi:10.1002/anie.201003419. PMID 20886485. 
  5. R. Caspi (2019-09-23). "Pathway: 5-hydroxybenzimidazole biosynthesis (anaerobic)". MetaCyc Metabolic Pathway Database. https://biocyc.org/META/NEW-IMAGE?type=PATHWAY&object=PWY-8097. 
  6. Mehta, Angad P.; Abdelwahed, Sameh H.; Fenwick, Michael K.; Hazra, Amrita B.; Taga, Michiko E.; Zhang, Yang; Ealick, Steven E.; Begley, Tadhg P. (2015). "Anaerobic 5-Hydroxybenzimidazole Formation from Aminoimidazole Ribotide: An Unanticipated Intersection of Thiamin and Vitamin B12 Biosynthesis". Journal of the American Chemical Society 137 (33): 10444–10447. doi:10.1021/jacs.5b03576. PMID 26237670.