Physics:List of optics equations
This article summarizes equations used in optics, including geometric optics, physical optics, radiometry, diffraction, and interferometry.
Definitions
Geometric optics (luminal rays)
General fundamental quantities
Quantity (common name/s) | (Common) symbol/s | SI units | Dimension |
---|---|---|---|
Object distance | x, s, d, u, x1, s1, d1, u1 | m | [L] |
Image distance | x', s', d', v, x2, s2, d2, v2 | m | [L] |
Object height | y, h, y1, h1 | m | [L] |
Image height | y', h', H, y2, h2, H2 | m | [L] |
Angle subtended by object | θ, θo, θ1 | rad | dimensionless |
Angle subtended by image | θ', θi, θ2 | rad | dimensionless |
Curvature radius of lens/mirror | r, R | m | [L] |
Focal length | f | m | [L] |
Quantity (common name/s) | (Common) symbol/s | Defining equation | SI units | Dimension |
---|---|---|---|---|
Lens power | P | [math]\displaystyle{ P = 1/f \,\! }[/math] | m−1 = D (dioptre) | [L]−1 |
Lateral magnification | m | [math]\displaystyle{ m = - x_2/x_1 = y_2/y_1 \,\! }[/math] | dimensionless | dimensionless |
Angular magnification | m | [math]\displaystyle{ m = \theta_2/\theta_1 \,\! }[/math] | dimensionless | dimensionless |
Physical optics (EM luminal waves)
There are different forms of the Poynting vector, the most common are in terms of the E and B or E and H fields.
Quantity (common name/s) | (Common) symbol/s | Defining equation | SI units | Dimension |
---|---|---|---|---|
Poynting vector | S, N | [math]\displaystyle{ \mathbf{N} = \frac{1}{\mu_0}\mathbf{E}\times\mathbf{B} = \mathbf{E}\times\mathbf{H} \,\! }[/math] | W m−2 | [M][T]−3 |
Poynting flux, EM field power flow | ΦS, ΦN | [math]\displaystyle{ \Phi_N = \int_S \mathbf{N} \cdot \mathrm{d}\mathbf{S} \,\! }[/math] | W | [M][L]2[T]−3 |
RMS Electric field of Light | Erms | [math]\displaystyle{ E_\mathrm{rms} = \sqrt{\langle E^2 \rangle} = E/\sqrt{2}\,\! }[/math] | N C−1 = V m−1 | [M][L][T]−3[I]−1 |
Radiation momentum | p, pEM, pr | [math]\displaystyle{ p_{EM} = U/c\,\! }[/math] | J s m−1 | [M][L][T]−1 |
Radiation pressure | Pr, pr, PEM | [math]\displaystyle{ P_{EM} = I/c = p_{EM}/At \,\! }[/math] | W m−2 | [M][T]−3 |
Radiometry
For spectral quantities two definitions are in use to refer to the same quantity, in terms of frequency or wavelength.
Quantity (common name/s) | (Common) symbol/s | Defining equation | SI units | Dimension |
---|---|---|---|---|
Radiant energy | Q, E, Qe, Ee | J | [M][L]2[T]−2 | |
Radiant exposure | He | [math]\displaystyle{ H_e = \mathrm{d} Q/\left ( \mathbf{\hat{e}}_{\angle} \cdot \mathrm{d}\mathbf{A} \right ) \,\! }[/math] | J m−2 | [M][T]−3 |
Radiant energy density | ωe | [math]\displaystyle{ \omega_e = \mathrm{d} Q/\mathrm{d}V \,\! }[/math] | J m−3 | [M][L]−3 |
Radiant flux, radiant power | Φ, Φe | [math]\displaystyle{ Q = \int \Phi \mathrm{d} t }[/math] | W | [M][L]2[T]−3 |
Radiant intensity | I, Ie | [math]\displaystyle{ \Phi = I \mathrm{d} \Omega \,\! }[/math] | W sr−1 | [M][L]2[T]−3 |
Radiance, intensity | L, Le | [math]\displaystyle{ \Phi = \iint L\left ( \mathbf{\hat{e}}_{\angle} \cdot \mathrm{d}\mathbf{A} \right ) \mathrm{d} \Omega }[/math] | W sr−1 m−2 | [M][T]−3 |
Irradiance | E, I, Ee, Ie | [math]\displaystyle{ \Phi = \int E \left ( \mathbf{\hat{e}}_{\angle} \cdot \mathrm{d}\mathbf{A} \right ) }[/math] | W m−2 | [M][T]−3 |
Radiant exitance, radiant emittance | M, Me | [math]\displaystyle{ \Phi = \int M \left ( \mathbf{\hat{e}}_{\angle} \cdot \mathrm{d}\mathbf{A} \right ) }[/math] | W m−2 | [M][T]−3 |
Radiosity | J, Jν, Je, Jeν | [math]\displaystyle{ J = E + M \,\! }[/math] | W m−2 | [M][T]−3 |
Spectral radiant flux, spectral radiant power | Φλ, Φν, Φeλ, Φeν | [math]\displaystyle{ Q=\iint\Phi_\lambda{\mathrm{d} \lambda \mathrm{d} t} }[/math]
[math]\displaystyle{ Q = \iint \Phi_\nu \mathrm{d} \nu \mathrm{d} t }[/math] |
W m−1 (Φλ) W Hz−1 = J (Φν) |
[M][L]−3[T]−3 (Φλ) [M][L]−2[T]−2 (Φν) |
Spectral radiant intensity | Iλ, Iν, Ieλ, Ieν | [math]\displaystyle{ \Phi = \iint I_\lambda \mathrm{d} \lambda \mathrm{d} \Omega }[/math]
[math]\displaystyle{ \Phi = \iint I_\nu \mathrm{d} \nu \mathrm{d} \Omega }[/math] |
W sr−1 m−1 (Iλ) W sr−1 Hz−1 (Iν) |
[M][L]−3[T]−3 (Iλ) [M][L]2[T]−2 (Iν) |
Spectral radiance | Lλ, Lν, Leλ, Leν | [math]\displaystyle{ \Phi = \iiint L_\lambda \mathrm{d} \lambda \left ( \mathbf{\hat{e}}_{\angle} \cdot \mathrm{d}\mathbf{A} \right ) \mathrm{d} \Omega }[/math]
[math]\displaystyle{ \Phi = \iiint L_\nu \mathrm{d} \nu \left ( \mathbf{\hat{e}}_{\angle} \cdot \mathrm{d}\mathbf{A} \right ) \mathrm{d} \Omega \,\! }[/math] |
W sr−1 m−3 (Lλ) W sr−1 m−2 Hz−1 (Lν) |
[M][L]−1[T]−3 (Lλ) [M][L]−2[T]−2 (Lν) |
Spectral irradiance | Eλ, Eν, Eeλ, Eeν | [math]\displaystyle{ \Phi = \iint E_\lambda \mathrm{d} \lambda \left ( \mathbf{\hat{e}}_{\angle} \cdot \mathrm{d}\mathbf{A} \right ) }[/math]
[math]\displaystyle{ \Phi = \iint E_\nu \mathrm{d} \nu \left ( \mathbf{\hat{e}}_{\angle} \cdot \mathrm{d}\mathbf{A} \right ) }[/math] |
W m−3 (Eλ) W m−2 Hz−1 (Eν) |
[M][L]−1[T]−3 (Eλ) [M][L]−2[T]−2 (Eν) |
Equations
Luminal electromagnetic waves
Physical situation | Nomenclature | Equations |
---|---|---|
Energy density in an EM wave | [math]\displaystyle{ \langle u \rangle \,\! }[/math] = mean energy density | For a dielectric: [math]\displaystyle{ \langle u \rangle = \frac{1}{2} \left ( \epsilon \mathbf{E}^2 + \mu \mathbf{B}^2 \right ) \,\! }[/math] |
Kinetic and potential momenta (non-standard terms in use) | Potential momentum:
[math]\displaystyle{ \mathbf{p}_\mathrm{p} = q\mathbf{A} \,\! }[/math] Kinetic momentum: [math]\displaystyle{ \mathbf{p}_\mathrm{k} = m\mathbf{v} \,\! }[/math] Canonical momentum: [math]\displaystyle{ \mathbf{p} = m\mathbf{v} + q\mathbf{A} \,\! }[/math] | |
Irradiance, light intensity |
|
[math]\displaystyle{ I = \langle \mathbf{S} \rangle = E^2_\mathrm{rms}/c\mu_0\,\! }[/math]
At a spherical surface: [math]\displaystyle{ I = \frac{P_0}{\Omega \left | r \right |^2}\,\! }[/math] |
Doppler effect for light (relativistic) | [math]\displaystyle{ \lambda=\lambda_0\sqrt{\frac{c-v}{c+v}}\,\! }[/math]
[math]\displaystyle{ v=|\Delta\lambda|c/\lambda_0\,\! }[/math] | |
Cherenkov radiation, cone angle |
|
[math]\displaystyle{ \cos \theta = \frac{c}{n v} = \frac{1}{v\sqrt{\epsilon\mu}} \,\! }[/math] |
Electric and magnetic amplitudes |
|
For a dielectric
[math]\displaystyle{ \left | \mathbf{E} \right | = \sqrt{\frac{\epsilon}{\mu}} \left | \mathbf{H} \right | \,\! }[/math] |
EM wave components | Electric
[math]\displaystyle{ \mathbf{E} = \mathbf{E}_0 \sin(kx-\omega t)\,\! }[/math] Magnetic [math]\displaystyle{ \mathbf{B} = \mathbf{B}_0 \sin(kx-\omega t)\,\! }[/math] |
Geometric optics
Physical situation | Nomenclature | Equations |
---|---|---|
Critical angle (optics) |
|
[math]\displaystyle{ \sin\theta_c = \frac{n_2}{n_1}\,\! }[/math] |
Thin lens equation |
|
[math]\displaystyle{ \frac{1}{x_1} +\frac{1}{x_2} = \frac{1}{f} \,\! }[/math]
Lens focal length from refraction indices |
Image distance in a plane mirror | [math]\displaystyle{ x_2 = -x_1\,\! }[/math] | |
Spherical mirror | r = curvature radius of mirror | Spherical mirror equation
[math]\displaystyle{ \frac{1}{x_1} + \frac{1}{x_2} = \frac{1}{f}= \frac{2}{r}\,\! }[/math] Image distance in a spherical mirror [math]\displaystyle{ \frac{n_1}{x_1} + \frac{n_2}{x_2} = \frac{\left ( n_2 - n_1 \right )}{r}\,\! }[/math] |
Subscripts 1 and 2 refer to initial and final optical media respectively.
These ratios are sometimes also used, following simply from other definitions of refractive index, wave phase velocity, and the luminal speed equation:
[math]\displaystyle{ \frac{n_1}{n_2} = \frac{v_2}{v_1} = \frac{\lambda_2}{\lambda_1} = \sqrt{\frac{\epsilon_1 \mu_1}{\epsilon_2 \mu_2}} \,\! }[/math]
where:
- ε = permittivity of medium,
- μ = permeability of medium,
- λ = wavelength of light in medium,
- v = speed of light in media.
Polarization
Physical situation | Nomenclature | Equations |
---|---|---|
Angle of total polarisation | θB = Reflective polarization angle, Brewster's angle | [math]\displaystyle{ \tan \theta_B = n_2/n_1\,\! }[/math] |
intensity from polarized light, Malus's law |
|
[math]\displaystyle{ I = I_0\cos^2\theta\,\! }[/math] |
Diffraction and interference
Property or effect | Nomenclature | Equation |
---|---|---|
Thin film in air |
|
|
The grating equation |
|
[math]\displaystyle{ \frac{\delta}{2\pi}\lambda = a \left ( \sin\theta + \sin\alpha \right ) \,\! }[/math] |
Rayleigh's criterion | [math]\displaystyle{ \theta_R = 1.22\lambda/\,\!d }[/math] | |
Bragg's law (solid state diffraction) |
|
[math]\displaystyle{ \frac{\delta}{2\pi} \lambda = 2d \sin\theta \,\! }[/math]
where [math]\displaystyle{ n \in \mathbf{N}\,\! }[/math] |
Single slit diffraction intensity |
[math]\displaystyle{ \phi = \frac{2 \pi a}{\lambda} \sin\theta \,\! }[/math] |
[math]\displaystyle{ I = I_0 \left [ \frac{ \sin \left( \phi/2 \right ) }{\left( \phi/2 \right )} \right ]^2 \,\! }[/math] |
N-slit diffraction (N ≥ 2) |
[math]\displaystyle{ \delta = \frac{2 \pi d}{\lambda} \sin\theta \,\! }[/math] |
[math]\displaystyle{ I = I_0 \left [ \frac{ \sin \left( N \delta/2 \right ) }{\sin \left( \delta/2 \right )} \right ]^2 \,\! }[/math] |
N-slit diffraction (all N) | [math]\displaystyle{ I = I_0 \left [ \frac{ \sin \left( \phi/2 \right ) }{\left( \phi/2 \right )} \frac{ \sin \left( N \delta/2 \right ) }{\sin \left( \delta/2 \right )} \right ]^2 \,\! }[/math] | |
Circular aperture intensity |
|
[math]\displaystyle{ I = I_0 \left ( \frac{2 J_1(ka \sin \theta)}{ka \sin \theta} \right )^2 }[/math] |
Amplitude for a general planar aperture | Cartesian and spherical polar coordinates are used, xy plane contains aperture
|
Near-field (Fresnel)
[math]\displaystyle{ A\left ( \mathbf{r} \right ) \propto \iint_\mathrm{aperture} E_\mathrm{inc} \left ( \mathbf{r}' \right )~ \frac{e^{ik \left | \mathbf{r} - \mathbf{r}' \right |}}{4 \pi \left | \mathbf{r} - \mathbf{r}' \right |} \mathrm{d}x'\mathrm{d}y' }[/math] Far-field (Fraunhofer) [math]\displaystyle{ A \left ( \mathbf{r} \right ) \propto \frac{e^{ik r}}{4 \pi r} \iint_\mathrm{aperture} E_\mathrm{inc}\left ( \mathbf{r}' \right ) e^{-ik \left [ \sin \theta \left ( \cos \phi x' + \sin \phi y' \right ) \right ] } \mathrm{d}x'\mathrm{d}y' }[/math] |
Huygens–Fresnel–Kirchhoff principle |
|
[math]\displaystyle{ A \mathbf ( \mathbf{r} ) = \frac{-i}{2\lambda} \iint_\mathrm{aperture} \frac{e^{i \mathbf{k} \cdot \left ( \mathbf{r} + \mathbf{r}_0 \right ) }}{ \left | \mathbf{r} \right |\left | \mathbf{r}_0 \right |} \left [ \cos \alpha_0 - \cos \alpha \right ] \mathrm{d}S \,\! }[/math] |
Kirchhoff's diffraction formula | [math]\displaystyle{ A \left ( \mathbf{r} \right ) = - \frac{1}{4 \pi} \iint_\mathrm{aperture} \frac{e^{i \mathbf{k} \cdot \mathbf{r}_0}}{\left | \mathbf{r}_0 \right |} \left[ i \left | \mathbf{k} \right | U_0 \left ( \mathbf{r}_0 \right ) \cos{\alpha} + \frac {\partial A_0 \left ( \mathbf{r}_0 \right )}{\partial n} \right ] \mathrm{d}S }[/math] |
Astrophysics definitions
In astrophysics, L is used for luminosity (energy per unit time, equivalent to power) and F is used for energy flux (energy per unit time per unit area, equivalent to intensity in terms of area, not solid angle). They are not new quantities, simply different names.
Quantity (common name/s) | (Common) symbol/s | Defining equation | SI units | Dimension |
---|---|---|---|---|
Comoving transverse distance | DM | pc (parsecs) | [L] | |
Luminosity distance | DL | [math]\displaystyle{ D_L = \sqrt{\frac{L}{4\pi F}} \, }[/math] | pc (parsecs) | [L] |
Apparent magnitude in band j (UV, visible and IR parts of EM spectrum) (Bolometric) | m | [math]\displaystyle{ m_j= -\frac{5}{2} \log_{10} \left | \frac {F_j}{F_j^0} \right | \, }[/math] | dimensionless | dimensionless |
Absolute magnitude
(Bolometric) |
M | [math]\displaystyle{ M = m - 5 \left [ \left ( \log_{10}{D_L} \right ) - 1 \right ]\!\, }[/math] | dimensionless | dimensionless |
Distance modulus | μ | [math]\displaystyle{ \mu = m - M \!\, }[/math] | dimensionless | dimensionless |
Colour indices | (No standard symbols) | [math]\displaystyle{ U-B = M_U - M_B\!\, }[/math] [math]\displaystyle{ B-V = M_B - M_V\!\, }[/math] |
dimensionless | dimensionless |
Bolometric correction | Cbol (No standard symbol) | [math]\displaystyle{ \begin{align} C_\mathrm{bol} & = m_\mathrm{bol} - V \\ & = M_\mathrm{bol} - M_V \end{align} \!\, }[/math] | dimensionless | dimensionless |
See also
- Defining equation (physical chemistry)
- List of electromagnetism equations
- List of equations in classical mechanics
- List of equations in gravitation
- List of equations in nuclear and particle physics
- List of equations in quantum mechanics
- List of equations in wave theory
- List of relativistic equations
Sources
- P.M. Whelan; M.J. Hodgeson (1978). Essential Principles of Physics (2nd ed.). John Murray. ISBN 0-7195-3382-1.
- G. Woan (2010). The Cambridge Handbook of Physics Formulas. Cambridge University Press. ISBN 978-0-521-57507-2. https://archive.org/details/cambridgehandboo0000woan.
- A. Halpern (1988). 3000 Solved Problems in Physics, Schaum Series. Mc Graw Hill. ISBN 978-0-07-025734-4.
- R.G. Lerner; G.L. Trigg (2005). Encyclopaedia of Physics (2nd ed.). VHC Publishers, Hans Warlimont, Springer. pp. 12–13. ISBN 978-0-07-025734-4.
- C.B. Parker (1994). McGraw Hill Encyclopaedia of Physics (2nd ed.). McGraw Hill. ISBN 0-07-051400-3. https://archive.org/details/mcgrawhillencycl1993park.
- P.A. Tipler; G. Mosca (2008). Physics for Scientists and Engineers: With Modern Physics (6th ed.). W.H. Freeman and Co. ISBN 978-1-4292-0265-7.
- L.N. Hand; J.D. Finch (2008). Analytical Mechanics. Cambridge University Press. ISBN 978-0-521-57572-0.
- T.B. Arkill; C.J. Millar (1974). Mechanics, Vibrations and Waves. John Murray. ISBN 0-7195-2882-8.
- H.J. Pain (1983). The Physics of Vibrations and Waves (3rd ed.). John Wiley & Sons. ISBN 0-471-90182-2.
- J.R. Forshaw; A.G. Smith (2009). Dynamics and Relativity. Wiley. ISBN 978-0-470-01460-8.
- G.A.G. Bennet (1974). Electricity and Modern Physics (2nd ed.). Edward Arnold (UK). ISBN 0-7131-2459-8.
- I.S. Grant; W.R. Phillips; Manchester Physics (2008). Electromagnetism (2nd ed.). John Wiley & Sons. ISBN 978-0-471-92712-9.
- D.J. Griffiths (2007). Introduction to Electrodynamics (3rd ed.). Pearson Education, Dorling Kindersley. ISBN 978-81-7758-293-2.
Further reading
- L.H. Greenberg (1978). Physics with Modern Applications. Holt-Saunders International W.B. Saunders and Co. ISBN 0-7216-4247-0. https://archive.org/details/physicswithmoder0000gree.
- J.B. Marion; W.F. Hornyak (1984). Principles of Physics. Holt-Saunders International Saunders College. ISBN 4-8337-0195-2.
- A. Beiser (1987). Concepts of Modern Physics (4th ed.). McGraw-Hill (International). ISBN 0-07-100144-1.
- H.D. Young; R.A. Freedman (2008). University Physics – With Modern Physics (12th ed.). Addison-Wesley (Pearson International). ISBN 978-0-321-50130-1.
Original source: https://en.wikipedia.org/wiki/List of optics equations.
Read more |