20,000

From HandWiki
Revision as of 13:39, 6 February 2024 by Gametune (talk | contribs) (fix)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Natural number
← 19999 20000 20001 →
Cardinaltwenty thousand
Ordinal20000th
(twenty thousandth)
Factorization25 × 54
Greek numeral[math]\displaystyle{ \stackrel{\beta}{\Mu} }[/math]
Roman numeralXX
Binary1001110001000002
Ternary10001022023
Quaternary103202004
Quinary11200005
Senary2323326
Octal470408
DuodecimalB6A812
Hexadecimal4E2016
Vigesimal2A0020
Base 36FFK36

20,000 (twenty thousand) is the natural number that comes after 19,999 and before 20,001.

20,000 is a round number, and is also in the title of Jules Verne's novel Twenty Thousand Leagues Under the Sea.

Selected numbers in the range 20001–29999

20001 to 20999

21000 to 21999

  • 21025 = 1452, palindromic in base 12 (1020112)
  • 21147 = Bell number[8]
  • 21181 = the least of five remaining Seventeen or Bust numbers in the Sierpiński problem
  • 21209 = number of reduced trees with 23 nodes[9]
  • 21856 = octahedral number[10]
  • 21943 = Friedman prime
  • 21952 = 283
  • 21978 = reverses when multiplied by 4: 4 × 21978 = 87912

22000 to 22999

23000 to 23999

  • 23000 = number of primes [math]\displaystyle{ \leq 2^{18} }[/math].[14]
  • 23401 = Leyland number:[4] 65 + 56
  • 23409 = 1532, sum of the cubes of the first 17 positive integers
  • 23497 = cuban prime[12]
  • 23821 = square pyramidal number[5]
  • 23833 = Padovan prime
  • 23969 = octahedral number[10]
  • 23976 = pentagonal pyramidal number[3]

24000 to 24999

  • 24000 = number of primitive polynomials of degree 20 over GF(2)[15]
  • 24211 = Zeisel number[16]
  • 24336 = 1562, palindromic in base 5: 12343215
  • 24389 = 293
  • 24571 = cuban prime[12]
  • 24631 = Wedderburn–Etherington prime[17]
  • 24649 = 1572, palindromic in base 12: 1232112
  • 24737 = one of five remaining Seventeen or Bust numbers in the Sierpinski problem

25000 to 25999

  • 25011 = the smallest composite number, ending in 1, 3, 7, or 9, that in base 10 remains composite after any insertion of a digit
  • 25085 = Zeisel number[16]
  • 25117 = cuban prime[12]
  • 25200 = highly composite number[2]
  • 25205 = largest number whose factorial is less than 10100000
  • 25482 = number of 21-bead necklaces (turning over is allowed) where complements are equivalent[18]
  • 25585 = square pyramidal number[5]
  • 25724 = Fine number[19]

26000 to 26999

  • 26214 = octahedral number[10]
  • 26227 = cuban prime[12]
  • 26272 = number of 20-bead binary necklaces with beads of 2 colors where the colors may be swapped but turning over is not allowed[20]
  • 26861 = smallest number for which there are more primes of the form 4k + 1 than of the form 4k + 3 up to the number, against Chebyshev's bias
  • 26896 = 1642, palindromic in base 9: 408049

27000 to 27999

  • 27000 = 303
  • 27405 = heptagonal number,[21] hexadecagonal number,[22] 48-gonal number, 80-gonal number, smallest integer that is polygonal in exactly 10 ways.[23]
  • 27434 = square pyramidal number[5]
  • 27559 = Zeisel number[16]
  • 27594 = number of primitive polynomials of degree 19 over GF(2)[15]
  • 27648 = 11 × 22 × 33 × 44
  • 27653 = Friedman prime
  • 27720 = highly composite number;[2] smallest number divisible by the numbers 1 to 12 (there is no smaller number divisible by the numbers 1 to 11 since any number divisible by 4 and 3 must be divisible by 12, since 4×3=12)
  • 27846 = harmonic divisor number[24]
  • 27889 = 1672

28000 to 28999

  • 28158 = pentagonal pyramidal number[3]
  • 28374 = smallest integer to start a run of six consecutive integers with the same number of divisors
  • 28393 = unique prime in base 13
  • 28547 = Friedman prime
  • 28559 = nice Friedman prime
  • 28561 = 1692 = 134 = 1192 + 1202, number that is simultaneously a square number and a centered square number, palindromic in base 12: 1464112
  • 28595 = octahedral number[10]
  • 28657 = Fibonacci prime,[25] Markov prime[26]
  • 28900 = 1702, palindromic in base 13: 1020113

29000 to 29999

  • 29241 = 1712, sum of the cubes of the first 18 positive integers
  • 29341 = Carmichael number[27]
  • 29370 = square pyramidal number[5]
  • 29527 = Friedman prime
  • 29531 = Friedman prime
  • 29601 = number of planar partitions of 18[28]
  • 29791 = 313

Primes

There are 983 prime numbers between 20000 and 30000.

References

  1. Sloane, N. J. A., ed. "Sequence A005893 (Number of points on surface of tetrahedron)". OEIS Foundation. https://oeis.org/A005893. 
  2. 2.0 2.1 2.2 Sloane, N. J. A., ed. "Sequence A002182 (Highly composite numbers)". OEIS Foundation. https://oeis.org/A002182. 
  3. 3.0 3.1 3.2 3.3 Sloane, N. J. A., ed. "Sequence A002411 (Pentagonal pyramidal numbers)". OEIS Foundation. https://oeis.org/A002411. 
  4. 4.0 4.1 Sloane, N. J. A., ed. "Sequence A076980 (Leyland numbers)". OEIS Foundation. https://oeis.org/A076980. 
  5. 5.0 5.1 5.2 5.3 5.4 5.5 Sloane, N. J. A., ed. "Sequence A000330 (Square pyramidal numbers)". OEIS Foundation. https://oeis.org/A000330. 
  6. Sloane, N. J. A., ed. "Sequence A000078 (Tetranacci numbers)". OEIS Foundation. https://oeis.org/A000078. 
  7. Sloane, N. J. A., ed. "Sequence A111441 (Numbers k such that the sum of the squares of the first k primes is divisible by k)". OEIS Foundation. https://oeis.org/A111441. Retrieved 2022-06-02. 
  8. Sloane, N. J. A., ed. "Sequence A000110 (Bell or exponential numbers)". OEIS Foundation. https://oeis.org/A000110. 
  9. Sloane, N. J. A., ed. "Sequence A000014 (Number of series-reduced trees with n nodes)". OEIS Foundation. https://oeis.org/A000014. 
  10. 10.0 10.1 10.2 10.3 Sloane, N. J. A., ed. "Sequence A005900 (Octahedral numbers)". OEIS Foundation. https://oeis.org/A005900. 
  11. Sloane, N. J. A., ed. "Sequence A006886 (Kaprekar numbers)". OEIS Foundation. https://oeis.org/A006886. 
  12. 12.0 12.1 12.2 12.3 12.4 Sloane, N. J. A., ed. "Sequence A002407 (Cuban primes)". OEIS Foundation. https://oeis.org/A002407. 
  13. Sloane, N. J. A., ed. "Sequence A003261 (Woodall numbers)". OEIS Foundation. https://oeis.org/A003261. 
  14. Sloane, N. J. A., ed. "Sequence A007053 (Number of primes [greater than or equal to 2^n)"]. OEIS Foundation. https://oeis.org/A007053. Retrieved 2022-06-02. 
  15. 15.0 15.1 Sloane, N. J. A., ed. "Sequence A011260 (Number of primitive polynomials of degree n over GF(2))". OEIS Foundation. https://oeis.org/A011260. 
  16. 16.0 16.1 16.2 Sloane, N. J. A., ed. "Sequence A051015 (Zeisel numbers)". OEIS Foundation. https://oeis.org/A051015. 
  17. Sloane, N. J. A., ed. "Sequence A001190 (Wedderburn-Etherington numbers)". OEIS Foundation. https://oeis.org/A001190. 
  18. Sloane, N. J. A., ed. "Sequence A000011 (Number of n-bead necklaces (turning over is allowed) where complements are equivalent)". OEIS Foundation. https://oeis.org/A000011. 
  19. Sloane, N. J. A., ed. "Sequence A000957 (Fine's sequence (or Fine numbers): number of relations of valence > 0 on an n-set; also number of ordered rooted trees with n edges having root of even degree)". OEIS Foundation. https://oeis.org/A000957. Retrieved 2022-06-01. 
  20. Sloane, N. J. A., ed. "Sequence A000013 (Definition (1): Number of n-bead binary necklaces with beads of 2 colors where the colors may be swapped but turning over is not allowed)". OEIS Foundation. https://oeis.org/A000013. 
  21. Sloane, N. J. A., ed. "Sequence A000566 (Heptagonal numbers)". OEIS Foundation. https://oeis.org/A000566. 
  22. Sloane, N. J. A., ed. "Sequence A051868 (Hexadecagonal numbers)". OEIS Foundation. https://oeis.org/A051868. 
  23. Sloane, N. J. A., ed. "Sequence A063778 (a(n) = the least integer that is polygonal in exactly n ways.)". OEIS Foundation. https://oeis.org/A063778. 
  24. "Sloane's A001599 : Harmonic or Ore numbers". OEIS Foundation. https://oeis.org/A001599. 
  25. "Sloane's A000045 : Fibonacci numbers". OEIS Foundation. https://oeis.org/A000045. 
  26. "Sloane's A002559 : Markoff (or Markov) numbers". OEIS Foundation. https://oeis.org/A002559. 
  27. "Sloane's A002997 : Carmichael numbers". OEIS Foundation. https://oeis.org/A002997. 
  28. Sloane, N. J. A., ed. "Sequence A000219 (Number of planar partitions (or plane partitions) of n)". OEIS Foundation. https://oeis.org/A000219.