Open mapping theorem (functional analysis)

From HandWiki
Revision as of 22:49, 6 February 2024 by NBrush (talk | contribs) (update)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Condition for a linear operator to be open

In functional analysis, the open mapping theorem, also known as the Banach–Schauder theorem or the Banach theorem[1] (named after Stefan Banach and Juliusz Schauder), is a fundamental result that states that if a bounded or continuous linear operator between Banach spaces is surjective then it is an open map.

Classical (Banach space) form

Open mapping theorem for Banach spaces (Rudin 1973, Theorem 2.11) — If [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math] are Banach spaces and [math]\displaystyle{ A : X \to Y }[/math] is a surjective continuous linear operator, then [math]\displaystyle{ A }[/math] is an open map (that is, if [math]\displaystyle{ U }[/math] is an open set in [math]\displaystyle{ X, }[/math] then [math]\displaystyle{ A(U) }[/math] is open in [math]\displaystyle{ Y }[/math]).

This proof uses the Baire category theorem, and completeness of both [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math] is essential to the theorem. The statement of the theorem is no longer true if either space is just assumed to be a normed vector space, but is true if [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math] are taken to be Fréchet spaces.

Proof

Suppose [math]\displaystyle{ A : X \to Y }[/math] is a surjective continuous linear operator. In order to prove that [math]\displaystyle{ A }[/math] is an open map, it is sufficient to show that [math]\displaystyle{ A }[/math] maps the open unit ball in [math]\displaystyle{ X }[/math] to a neighborhood of the origin of [math]\displaystyle{ Y. }[/math]

Let [math]\displaystyle{ U = B_1^X(0), V = B_1^Y(0). }[/math] Then [math]\displaystyle{ X = \bigcup_{k \in \N} k U. }[/math]

Since [math]\displaystyle{ A }[/math] is surjective: [math]\displaystyle{ Y = A(X) = A\left(\bigcup_{k \in \N} k U\right) = \bigcup_{k \in \N} A(kU). }[/math]

But [math]\displaystyle{ Y }[/math] is Banach so by Baire's category theorem [math]\displaystyle{ \exists k \in \N: \qquad \left(\overline{A(kU)} \right)^{\circ} \neq \varnothing. }[/math]

That is, we have [math]\displaystyle{ c \in Y }[/math] and [math]\displaystyle{ r \gt 0 }[/math] such that [math]\displaystyle{ B_r(c) \subseteq \left(\overline{A(kU)} \right)^\circ \subseteq \overline{A(kU)}. }[/math]

Let [math]\displaystyle{ v \in V, }[/math] then [math]\displaystyle{ c, c + r v \in B_r(c) \subseteq \overline{A(kU)}. }[/math]

By continuity of addition and linearity, the difference [math]\displaystyle{ r v }[/math] satisfies [math]\displaystyle{ r v \in \overline{A(kU)} + \overline{A(kU)} \subseteq \overline{A(kU) + A(kU)} \subseteq \overline{A(2kU)}, }[/math] and by linearity again, [math]\displaystyle{ V \subseteq \overline{A(LU)} }[/math]

where we have set [math]\displaystyle{ L = 2 k / r. }[/math] It follows that for all [math]\displaystyle{ y \in Y }[/math] and all [math]\displaystyle{ \epsilon \gt 0, }[/math] there exists some [math]\displaystyle{ x \in X }[/math] such that [math]\displaystyle{ \qquad \|x\|_X \leq L \|y\|_Y \quad \text{and} \quad \|y - A x\|_Y \lt \epsilon. \qquad (1) }[/math]

Our next goal is to show that [math]\displaystyle{ V \subseteq A(2LU). }[/math]

Let [math]\displaystyle{ y \in V. }[/math] By (1), there is some [math]\displaystyle{ x_1 }[/math] with [math]\displaystyle{ \left\|x_1\right\| \lt L }[/math] and [math]\displaystyle{ \left\|y - A x_1\right\| \lt 1/2. }[/math] Define a sequence [math]\displaystyle{ \left(x_n\right) }[/math] inductively as follows. Assume: [math]\displaystyle{ \|x_n\| \lt \frac{L}{2^{n-1}} \quad \text{and} \quad \left\|y - A\left(x_1 + x_2 + \cdots + x_n\right)\right\| \lt \frac{1}{2^n}. \qquad (2) }[/math]

Then by (1) we can pick [math]\displaystyle{ x_{n+1} }[/math] so that: [math]\displaystyle{ \|x_{n+1}\| \lt \frac{L}{2^n} \quad \text{and} \quad \left\|y - A\left(x_1 + x_2 + \cdots + x_n\right) - A\left(x_{n+1}\right)\right\| \lt \frac{1}{2^{n+1}}, }[/math] so (2) is satisfied for [math]\displaystyle{ x_{n+1}. }[/math] Let [math]\displaystyle{ s_n = x_1 + x_2 + \cdots + x_n. }[/math]

From the first inequality in (2), [math]\displaystyle{ \left(s_n\right) }[/math]is a Cauchy sequence, and since [math]\displaystyle{ X }[/math] is complete, [math]\displaystyle{ s_n }[/math] converges to some [math]\displaystyle{ x \in X. }[/math] By (2), the sequence [math]\displaystyle{ A s_n }[/math] tends to [math]\displaystyle{ y }[/math] and so [math]\displaystyle{ Ax = y }[/math] by continuity of [math]\displaystyle{ A. }[/math] Also, [math]\displaystyle{ \|x\| = \lim_{n \to \infty} \|s_n\| \leq \sum_{n=1}^\infty \|x_n\| \lt 2 L. }[/math]

This shows that [math]\displaystyle{ y }[/math] belongs to [math]\displaystyle{ A(2LU), }[/math] so [math]\displaystyle{ V \subseteq A(2LU) }[/math] as claimed. Thus the image [math]\displaystyle{ A(U) }[/math] of the unit ball in [math]\displaystyle{ X }[/math] contains the open ball [math]\displaystyle{ V / 2L }[/math] of [math]\displaystyle{ Y. }[/math] Hence, [math]\displaystyle{ A(U) }[/math] is a neighborhood of the origin in [math]\displaystyle{ Y, }[/math] and this concludes the proof.

Related results

Theorem[2] — Let [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math] be Banach spaces, let [math]\displaystyle{ B_X }[/math] and [math]\displaystyle{ B_Y }[/math] denote their open unit balls, and let [math]\displaystyle{ T : X \to Y }[/math] be a bounded linear operator. If [math]\displaystyle{ \delta \gt 0 }[/math] then among the following four statements we have [math]\displaystyle{ (1) \implies (2) \implies (3) \implies (4) }[/math] (with the same [math]\displaystyle{ \delta }[/math])

  1. [math]\displaystyle{ \left\|T^* y^*\right\| \geq \delta \left\|y^*\right\| }[/math] for all [math]\displaystyle{ y^* \in Y^* }[/math];
  2. [math]\displaystyle{ \overline{T\left(B_X\right)} \supseteq \delta B_Y }[/math];
  3. [math]\displaystyle{ {T\left(B_X\right)} \supseteq \delta B_Y }[/math];
  4. [math]\displaystyle{ \operatorname{Im} T = Y }[/math] (that is, [math]\displaystyle{ T }[/math] is surjective).

Furthermore, if [math]\displaystyle{ T }[/math] is surjective then (1) holds for some [math]\displaystyle{ \delta \gt 0 }[/math]

Consequences

The open mapping theorem has several important consequences:

  • If [math]\displaystyle{ A : X \to Y }[/math] is a bijective continuous linear operator between the Banach spaces [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y, }[/math] then the inverse operator [math]\displaystyle{ A^{-1} : Y \to X }[/math] is continuous as well (this is called the bounded inverse theorem).[3]
  • If [math]\displaystyle{ A : X \to Y }[/math] is a linear operator between the Banach spaces [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y, }[/math] and if for every sequence [math]\displaystyle{ \left(x_n\right) }[/math] in [math]\displaystyle{ X }[/math] with [math]\displaystyle{ x_n \to 0 }[/math] and [math]\displaystyle{ A x_n \to y }[/math] it follows that [math]\displaystyle{ y = 0, }[/math] then [math]\displaystyle{ A }[/math] is continuous (the closed graph theorem).[4]

Generalizations

Local convexity of [math]\displaystyle{ X }[/math] or [math]\displaystyle{ Y }[/math]  is not essential to the proof, but completeness is: the theorem remains true in the case when [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math] are F-spaces. Furthermore, the theorem can be combined with the Baire category theorem in the following manner:

Open mapping theorem for continuous maps[5][6] — Let [math]\displaystyle{ A : X \to Y }[/math] be a continuous linear operator from a complete pseudometrizable TVS [math]\displaystyle{ X }[/math] onto a Hausdorff TVS [math]\displaystyle{ Y. }[/math] If [math]\displaystyle{ \operatorname{Im} A }[/math] is nonmeager in [math]\displaystyle{ Y }[/math] then [math]\displaystyle{ A : X \to Y }[/math] is a (surjective) open map and [math]\displaystyle{ Y }[/math] is a complete pseudometrizable TVS. Moreover, if [math]\displaystyle{ X }[/math] is assumed to be hausdorff (i.e. a F-space), then [math]\displaystyle{ Y }[/math] is also an F-space.

Furthermore, in this latter case if [math]\displaystyle{ N }[/math] is the kernel of [math]\displaystyle{ A, }[/math] then there is a canonical factorization of [math]\displaystyle{ A }[/math] in the form [math]\displaystyle{ X \to X/N \overset{\alpha}{\to} Y }[/math] where [math]\displaystyle{ X / N }[/math] is the quotient space (also an F-space) of [math]\displaystyle{ X }[/math] by the closed subspace [math]\displaystyle{ N. }[/math] The quotient mapping [math]\displaystyle{ X \to X / N }[/math] is open, and the mapping [math]\displaystyle{ \alpha }[/math] is an isomorphism of topological vector spaces.[7]

An important special case of this theorem can also be stated as

Theorem[8] — Let [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math] be two F-spaces. Then every continuous linear map of [math]\displaystyle{ X }[/math] onto [math]\displaystyle{ Y }[/math] is a TVS homomorphism, where a linear map [math]\displaystyle{ u : X \to Y }[/math] is a topological vector space (TVS) homomorphism if the induced map [math]\displaystyle{ \hat{u} : X / \ker(u) \to Y }[/math] is a TVS-isomorphism onto its image.

On the other hand, a more general formulation, which implies the first, can be given:

Open mapping theorem[6] — Let [math]\displaystyle{ A : X \to Y }[/math] be a surjective linear map from a complete pseudometrizable TVS [math]\displaystyle{ X }[/math] onto a TVS [math]\displaystyle{ Y }[/math] and suppose that at least one of the following two conditions is satisfied:

  1. [math]\displaystyle{ Y }[/math] is a Baire space, or
  2. [math]\displaystyle{ X }[/math] is locally convex and [math]\displaystyle{ Y }[/math] is a barrelled space,

If [math]\displaystyle{ A }[/math] is a closed linear operator then [math]\displaystyle{ A }[/math] is an open mapping. If [math]\displaystyle{ A }[/math] is a continuous linear operator and [math]\displaystyle{ Y }[/math] is Hausdorff then [math]\displaystyle{ A }[/math] is (a closed linear operator and thus also) an open mapping.

Nearly/Almost open linear maps

A linear map [math]\displaystyle{ A : X \to Y }[/math] between two topological vector spaces (TVSs) is called a nearly open map (or sometimes, an almost open map) if for every neighborhood [math]\displaystyle{ U }[/math] of the origin in the domain, the closure of its image [math]\displaystyle{ \operatorname{cl} A(U) }[/math] is a neighborhood of the origin in [math]\displaystyle{ Y. }[/math][9] Many authors use a different definition of "nearly/almost open map" that requires that the closure of [math]\displaystyle{ A(U) }[/math] be a neighborhood of the origin in [math]\displaystyle{ A(X) }[/math] rather than in [math]\displaystyle{ Y, }[/math][9] but for surjective maps these definitions are equivalent. A bijective linear map is nearly open if and only if its inverse is continuous.[9] Every surjective linear map from locally convex TVS onto a barrelled TVS is nearly open.[10] The same is true of every surjective linear map from a TVS onto a Baire TVS.[10]

Open mapping theorem[11] — If a closed surjective linear map from a complete pseudometrizable TVS onto a Hausdorff TVS is nearly open then it is open.

Consequences

Theorem[12] — If [math]\displaystyle{ A : X \to Y }[/math] is a continuous linear bijection from a complete Pseudometrizable topological vector space (TVS) onto a Hausdorff TVS that is a Baire space, then [math]\displaystyle{ A : X \to Y }[/math] is a homeomorphism (and thus an isomorphism of TVSs).

Webbed spaces

Main page: Webbed space

Webbed spaces are a class of topological vector spaces for which the open mapping theorem and the closed graph theorem hold.

See also

References

  1. Trèves 2006, p. 166.
  2. Rudin 1991, p. 100.
  3. Rudin 1973, Corollary 2.12.
  4. Rudin 1973, Theorem 2.15.
  5. Rudin 1991, Theorem 2.11.
  6. 6.0 6.1 Narici & Beckenstein 2011, p. 468.
  7. Dieudonné 1970, 12.16.8.
  8. Trèves 2006, p. 170
  9. 9.0 9.1 9.2 Narici & Beckenstein 2011, pp. 466.
  10. 10.0 10.1 Narici & Beckenstein 2011, pp. 467.
  11. Narici & Beckenstein 2011, pp. 466−468.
  12. Narici & Beckenstein 2011, p. 469.

Bibliography