Astronomy:HD 168443
Observation data Equinox J2000.0]] (ICRS) | |
---|---|
Constellation | Serpens |
Right ascension | 18h 20m 03.933288s[1] |
Declination | −09° 35′ 44.614581″[1] |
Apparent magnitude (V) | 6.92[2] |
Characteristics | |
Spectral type | G6V[3] |
B−V color index | 0.724±0.014[2] |
Astrometry | |
Radial velocity (Rv) | −48.69±0.10[2] km/s |
Proper motion (μ) | RA: −91.792±0.036[1] mas/yr Dec.: −223.979±0.030[1] mas/yr |
Parallax (π) | 25.5913 ± 0.0410[1] mas |
Distance | 127.4 ± 0.2 ly (39.08 ± 0.06 pc) |
Absolute magnitude (MV) | 4.198[4] |
Details[4] | |
Mass | 0.995±0.019 M☉ |
Radius | 1.51±0.06 R☉ |
Luminosity | 2.413±0.009[5] L☉ |
Surface gravity (log g) | 4.07±0.06 cgs |
Temperature | 5,491±44 K |
Metallicity [Fe/H] | +0.04±0.03 dex |
Rotational velocity (v sin i) | 2.20±0.50 km/s |
Age | 11.3+1.0 −0.8[2] Gyr |
Other designations | |
Database references | |
SIMBAD | data |
Exoplanet Archive | data |
HD 168443 is an ordinary yellow-hued star in the Serpens Cauda segment of the equatorial constellation of Serpens. It is known to have two substellar companions. With an apparent visual magnitude of 6.92,[2] the star lies just below the nominal lower brightness limit of visibility to the normal human eye. This system is located at a distance of 127 light years from the Sun based on parallax,[1] but is drifting closer with a radial velocity of −48.7 km/s.[2]
This stellar object is a core hydrogen fusing G-type main-sequence star with a classification of G6V, although it is likely evolved[4] with an age of around 11 billion years.[2] It is slightly lower in mass than the Sun but has a radius that is larger by 51%. The star is spinning with a leisurely projected rotational velocity of 2.2 km/s[4] and it has a very inactive chromosphere.[3][4] It is radiating 2.4[5] times the luminosity of the Sun from its photosphere at an effective temperature of 5,491 K.[4]
Planetary system
HD 168443 is known to be orbited by a super-Jupiter exoplanet, discovered in 1999, and a brown dwarf, discovered in 2001. The brown dwarf takes 30 times longer to orbit the star than the planet.[7][8][9] Both have eccentric orbits.[4] An orbital fit to Hipparcos astrometric data suggested the brown dwarf has a mass of 34±12 Jupiter mass.[9] A 2022 study utilizing both Hipparcos and Gaia data instead measured a true mass of 17.3 MJ for HD 168443 c, close to the minimum mass.[10] Test simulations of massless particles orbiting in between these two bodies show that all such objects are quickly ejected within two million years. That suggests any other planetary companions would be orbiting further out from the star.[11]
Companion (in order from star) |
Mass | Semimajor axis (AU) |
Orbital period (days) |
Eccentricity | Inclination | Radius |
---|---|---|---|---|---|---|
b | ≥7.659±0.0975 MJ | 0.2931±0.00181 | 58.11247±0.0003 | 0.52883±0.00103 | — | — |
c | 17.306+2.550 −0.906 MJ |
2.8373±0.018 | 1,749.83±0.57 | 0.2113±0.00171 | 91.218+22.283 −16.088° |
— |
See also
- HD 38529
- List of exoplanets discovered before 2000 - HD 168443 b
- List of exoplanets discovered between 2000–2009 - HD 168443 c
References
- ↑ 1.0 1.1 1.2 1.3 1.4 Vallenari, A. et al. (2022). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy & Astrophysics. doi:10.1051/0004-6361/202243940 Gaia DR3 record for this source at VizieR.
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Anderson, E.; Francis, Ch. (2012). "XHIP: An extended hipparcos compilation". Astronomy Letters 38 (5): 331. doi:10.1134/S1063773712050015. Bibcode: 2012AstL...38..331A.
- ↑ 3.0 3.1 Gray, R. O. et al. (July 2006), "Contributions to the Nearby Stars (NStars) Project: Spectroscopy of Stars Earlier than M0 within 40 pc-The Southern Sample", The Astronomical Journal 132 (1): 161–170, doi:10.1086/504637, Bibcode: 2006AJ....132..161G
- ↑ 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 Pilyavsky, Genady et al. (December 2011). "A Search for the Transit of HD 168443b: Improved Orbital Parameters and Photometry". The Astrophysical Journal 743 (2): 8. doi:10.1088/0004-637X/743/2/162. 162. Bibcode: 2011ApJ...743..162P.
- ↑ 5.0 5.1 Brown, A. G. A. (August 2018). "Gaia Data Release 2: Summary of the contents and survey properties". Astronomy & Astrophysics 616: A1. doi:10.1051/0004-6361/201833051. Bibcode: 2018A&A...616A...1G. Gaia DR2 record for this source at VizieR.
- ↑ "HD 168443". SIMBAD. Centre de données astronomiques de Strasbourg. http://simbad.u-strasbg.fr/simbad/sim-basic?Ident=HD+168443.
- ↑ Marcy, Geoffrey W. et al. (1999). "Two New Planets in Eccentric Orbits". The Astrophysical Journal 520 (1): 239–247. doi:10.1086/307451. Bibcode: 1999ApJ...520..239M.
- ↑ Marcy, Geoffrey W. et al. (2001). "Two Substellar Companions Orbiting HD 168443". The Astrophysical Journal 555 (1): 418–425. doi:10.1086/321445. Bibcode: 2001ApJ...555..418M.
- ↑ 9.0 9.1 Reffert, S.; Quirrenbach, A. (2006). "Hipparcos astrometric orbits for two brown dwarf companions: HD 38529 and HD 168443". Astronomy and Astrophysics 449 (2): 699–702. doi:10.1051/0004-6361:20054611. Bibcode: 2006A&A...449..699R. https://www.aanda.org/articles/aa/full/2006/14/aa4611-05/aa4611-05.html.
- ↑ 10.0 10.1 Feng, Fabo et al. (August 2022). "3D Selection of 167 Substellar Companions to Nearby Stars". The Astrophysical Journal Supplement Series 262 (21): 21. doi:10.3847/1538-4365/ac7e57. Bibcode: 2022ApJS..262...21F.
- ↑ Barnes, Rory; Raymond, Sean N. (December 2004). "Predicting Planets in Known Extrasolar Planetary Systems. I. Test Particle Simulations". The Astrophysical Journal 617 (1): 569–574. doi:10.1086/423419. Bibcode: 2004ApJ...617..569B.
External links
- "Two new planetary systems discovered" (Press release). Kamuela, Hawaii: W. M. Keck Observatory. January 9, 2001. Retrieved August 13, 2019.
- "Notes for star HD 168443". Extrasolar Planets Encyclopaedia. http://exoplanet.eu/star.php?st=HD+168443. Retrieved 2008-09-08.
Original source: https://en.wikipedia.org/wiki/HD 168443.
Read more |