40,000
From HandWiki
Short description: Natural number
| ||||
---|---|---|---|---|
Cardinal | forty thousand | |||
Ordinal | 40000th (forty thousandth) | |||
Factorization | 26 × 54 | |||
Divisors | 35 total | |||
Greek numeral | [math]\displaystyle{ \stackrel{\delta}{\Mu} }[/math] | |||
Roman numeral | XL | |||
Binary | 10011100010000002 | |||
Ternary | 20002121113 | |||
Quaternary | 213010004 | |||
Quinary | 22400005 | |||
Senary | 5051046 | |||
Octal | 1161008 | |||
Duodecimal | 1B19412 | |||
Hexadecimal | 9C4016 | |||
Vigesimal | 500020 | |||
Base 36 | UV436 |
40,000 (forty thousand) is the natural number that comes after 39,999 and before 40,001. It is the square of 200.
Selected numbers in the range 40001–49999
40001 to 40999
- 40320 = smallest factorial (8!) that is not a highly composite number
- 40425 = square pyramidal number
- 40585 = largest factorion[1]
- 40678 = pentagonal pyramidal number
- 40804 = palindromic square
41000 to 41999
- 41041 = Carmichael number[2]
- 41472 = 3-smooth number
- 41586 = Large Schröder number
- 41616 = triangular square number[3]
- 41835 = Motzkin number[4]
- 41841 = 1/41841 = 0.0000239 is a repeating decimal with period 7.
42000 to 42999
- 42680 = octahedral number[5]
- 42875 = 353
- 42925 = square pyramidal number
43000 to 43999
- 43261 = Markov number[6]
- 43390 = number of primes [math]\displaystyle{ \leq 2^{19} }[/math].[7]
- 43560 = pentagonal pyramidal number
- 43691 = Wagstaff prime[8]
44000 to 44999
- 44100 = sum of the cubes of the first 20 positive integers. 44,100 Hz is a common sampling frequency in digital audio (and is the standard for compact discs).
- 44444 = repdigit
- 44721 = smallest positive integer such that the expression 1/n − 1/n + 2 ≤ 10−9
- 44944 = palindromic square
45000 to 45999
- 45360 = highly composite number;[9] first number to have 100 factors (including one and itself)
46000 to 46999
- 46233 = sum of the first eight factorials
- 46368 = Fibonacci number[10]
- 46656 = 363, 66, 3-smooth number
- 46657 = Carmichael number[2]
- 46664 = Nelson Mandela's prisoner number
47000 to 47999
- 47058 = primary pseudoperfect number[11]
- 47160 = 10-th derivative of xx at x=1[12]
- 47321/33461 ≈ √2
48000 to 48999
49000 to 49999
- 49151 = Woodall number[13]
- 49152 = 3-smooth number
- 49726 = pentagonal pyramidal number
References
- ↑ "Sloane's A014080 : Factorions". OEIS Foundation. https://oeis.org/A014080.
- ↑ 2.0 2.1 "Sloane's A002997 : Carmichael numbers". OEIS Foundation. https://oeis.org/A002997.
- ↑ "Sloane's A001110 : Square triangular numbers". OEIS Foundation. https://oeis.org/A001110.
- ↑ "Sloane's A001006 : Motzkin numbers". OEIS Foundation. https://oeis.org/A001006.
- ↑ "Sloane's A005900 : Octahedral numbers". OEIS Foundation. https://oeis.org/A005900.
- ↑ "Sloane's A002559 : Markoff (or Markov) numbers". OEIS Foundation. https://oeis.org/A002559.
- ↑ Sloane, N. J. A., ed. "Sequence A007053". OEIS Foundation. https://oeis.org/A007053. Retrieved 2022-06-02.
- ↑ "Sloane's A000979 : Wagstaff primes". OEIS Foundation. https://oeis.org/A000979.
- ↑ "Sloane's A002182 : Highly composite numbers". OEIS Foundation. https://oeis.org/A002182.
- ↑ "Sloane's A000045 : Fibonacci numbers". OEIS Foundation. https://oeis.org/A000045.
- ↑ "Sloane's A054377 : Primary pseudoperfect numbers". OEIS Foundation. https://oeis.org/A054377.
- ↑ Sloane, N. J. A., ed. "Sequence A005727". OEIS Foundation. https://oeis.org/A005727.
- ↑ "Sloane's A003261 : Woodall numbers". OEIS Foundation. https://oeis.org/A003261.
![]() | Original source: https://en.wikipedia.org/wiki/40,000.
Read more |