Factorion
In number theory, a factorion in a given number base [math]\displaystyle{ b }[/math] is a natural number that equals the sum of the factorials of its digits.[1][2][3] The name factorion was coined by the author Clifford A. Pickover.[4]
Definition
Let [math]\displaystyle{ n }[/math] be a natural number. For a base [math]\displaystyle{ b \gt 1 }[/math], we define the sum of the factorials of the digits[5][6] of [math]\displaystyle{ n }[/math], [math]\displaystyle{ \operatorname{SFD}_b : \mathbb{N} \rightarrow \mathbb{N} }[/math], to be the following:
- [math]\displaystyle{ \operatorname{SFD}_b(n) = \sum_{i=0}^{k - 1} d_i!. }[/math]
where [math]\displaystyle{ k = \lfloor \log_b n \rfloor + 1 }[/math] is the number of digits in the number in base [math]\displaystyle{ b }[/math], [math]\displaystyle{ n! }[/math] is the factorial of [math]\displaystyle{ n }[/math] and
- [math]\displaystyle{ d_i = \frac{n \bmod{b^{i+1}} - n \bmod{b^{i}}}{b^{i}} }[/math]
is the value of the [math]\displaystyle{ i }[/math]th digit of the number. A natural number [math]\displaystyle{ n }[/math] is a [math]\displaystyle{ b }[/math]-factorion if it is a fixed point for [math]\displaystyle{ \operatorname{SFD}_b }[/math], i.e. if [math]\displaystyle{ \operatorname{SFD}_b(n) = n }[/math].[7] [math]\displaystyle{ 1 }[/math] and [math]\displaystyle{ 2 }[/math] are fixed points for all bases [math]\displaystyle{ b }[/math], and thus are trivial factorions for all [math]\displaystyle{ b }[/math], and all other factorions are nontrivial factorions.
For example, the number 145 in base [math]\displaystyle{ b = 10 }[/math] is a factorion because [math]\displaystyle{ 145 = 1! + 4! + 5! }[/math].
For [math]\displaystyle{ b = 2 }[/math], the sum of the factorials of the digits is simply the number of digits [math]\displaystyle{ k }[/math] in the base 2 representation since [math]\displaystyle{ 0! = 1! = 1 }[/math].
A natural number [math]\displaystyle{ n }[/math] is a sociable factorion if it is a periodic point for [math]\displaystyle{ \operatorname{SFD}_b }[/math], where [math]\displaystyle{ \operatorname{SFD}_b^k(n) = n }[/math] for a positive integer [math]\displaystyle{ k }[/math], and forms a cycle of period [math]\displaystyle{ k }[/math]. A factorion is a sociable factorion with [math]\displaystyle{ k = 1 }[/math], and a amicable factorion is a sociable factorion with [math]\displaystyle{ k = 2 }[/math].[8][9]
All natural numbers [math]\displaystyle{ n }[/math] are preperiodic points for [math]\displaystyle{ \operatorname{SFD}_b }[/math], regardless of the base. This is because all natural numbers of base [math]\displaystyle{ b }[/math] with [math]\displaystyle{ k }[/math] digits satisfy [math]\displaystyle{ b^{k-1} \leq n \leq (b-1)!(k) }[/math]. However, when [math]\displaystyle{ k \geq b }[/math], then [math]\displaystyle{ b^{k-1} \gt (b-1)!(k) }[/math] for [math]\displaystyle{ b \gt 2 }[/math], so any [math]\displaystyle{ n }[/math] will satisfy [math]\displaystyle{ n \gt \operatorname{SFD}_b(n) }[/math] until [math]\displaystyle{ n \lt b^b }[/math]. There are finitely many natural numbers less than [math]\displaystyle{ b^b }[/math], so the number is guaranteed to reach a periodic point or a fixed point less than [math]\displaystyle{ b^b }[/math], making it a preperiodic point. For [math]\displaystyle{ b = 2 }[/math], the number of digits [math]\displaystyle{ k \leq n }[/math] for any number, once again, making it a preperiodic point. This means also that there are a finite number of factorions and cycles for any given base [math]\displaystyle{ b }[/math].
The number of iterations [math]\displaystyle{ i }[/math] needed for [math]\displaystyle{ \operatorname{SFD}_b^i(n) }[/math] to reach a fixed point is the [math]\displaystyle{ \operatorname{SFD}_b }[/math] function's persistence of [math]\displaystyle{ n }[/math], and undefined if it never reaches a fixed point.
Factorions for SFDb
b = (k − 1)!
Let [math]\displaystyle{ k }[/math] be a positive integer and the number base [math]\displaystyle{ b = (k - 1)! }[/math]. Then:
- [math]\displaystyle{ n_1 = kb + 1 }[/math] is a factorion for [math]\displaystyle{ \operatorname{SFD}_b }[/math] for all [math]\displaystyle{ k. }[/math]
Let the digits of [math]\displaystyle{ n_1 = d_1 b + d_0 }[/math] be [math]\displaystyle{ d_1 = k }[/math], and [math]\displaystyle{ d_0 = 1. }[/math] Then
- [math]\displaystyle{ \operatorname{SFD}_b(n_1) = d_1! + d_0! }[/math]
- [math]\displaystyle{ = k! + 1! }[/math]
- [math]\displaystyle{ = k(k - 1)! + 1 }[/math]
- [math]\displaystyle{ = d_1 b + d_0 }[/math]
- [math]\displaystyle{ = n_1 }[/math]
Thus [math]\displaystyle{ n_1 }[/math] is a factorion for [math]\displaystyle{ F_b }[/math] for all [math]\displaystyle{ k }[/math].
- [math]\displaystyle{ n_2 = kb + 2 }[/math] is a factorion for [math]\displaystyle{ \operatorname{SFD}_b }[/math] for all [math]\displaystyle{ k }[/math].
Let the digits of [math]\displaystyle{ n_2 = d_1 b + d_0 }[/math] be [math]\displaystyle{ d_1 = k }[/math], and [math]\displaystyle{ d_0 = 2 }[/math]. Then
- [math]\displaystyle{ \operatorname{SFD}_b(n_2) = d_1! + d_0! }[/math]
- [math]\displaystyle{ = k! + 2! }[/math]
- [math]\displaystyle{ = k(k - 1)! + 2 }[/math]
- [math]\displaystyle{ = d_1 b + d_0 }[/math]
- [math]\displaystyle{ = n_2 }[/math]
Thus [math]\displaystyle{ n_2 }[/math] is a factorion for [math]\displaystyle{ F_b }[/math] for all [math]\displaystyle{ k }[/math].
[math]\displaystyle{ k }[/math] | [math]\displaystyle{ b }[/math] | [math]\displaystyle{ n_1 }[/math] | [math]\displaystyle{ n_2 }[/math] |
---|---|---|---|
4 | 6 | 41 | 42 |
5 | 24 | 51 | 52 |
6 | 120 | 61 | 62 |
7 | 720 | 71 | 72 |
b = k! − k + 1
Let [math]\displaystyle{ k }[/math] be a positive integer and the number base [math]\displaystyle{ b = k! - k + 1 }[/math]. Then:
- [math]\displaystyle{ n_1 = b + k }[/math] is a factorion for [math]\displaystyle{ \operatorname{SFD}_b }[/math] for all [math]\displaystyle{ k }[/math].
Let the digits of [math]\displaystyle{ n_1 = d_1 b + d_0 }[/math] be [math]\displaystyle{ d_1 = 1 }[/math], and [math]\displaystyle{ d_0 = k }[/math]. Then
- [math]\displaystyle{ \operatorname{SFD}_b(n_1) = d_1! + d_0! }[/math]
- [math]\displaystyle{ = 1! + k! }[/math]
- [math]\displaystyle{ = k! + 1 - k + k }[/math]
- [math]\displaystyle{ = 1(k! - k + 1) + k }[/math]
- [math]\displaystyle{ = d_1 b + d_0 }[/math]
- [math]\displaystyle{ = n_1 }[/math]
Thus [math]\displaystyle{ n_1 }[/math] is a factorion for [math]\displaystyle{ F_b }[/math] for all [math]\displaystyle{ k }[/math].
[math]\displaystyle{ k }[/math] | [math]\displaystyle{ b }[/math] | [math]\displaystyle{ n_1 }[/math] |
---|---|---|
3 | 4 | 13 |
4 | 21 | 14 |
5 | 116 | 15 |
6 | 715 | 16 |
Table of factorions and cycles of SFDb
All numbers are represented in base [math]\displaystyle{ b }[/math].
Base [math]\displaystyle{ b }[/math] | Nontrivial factorion ([math]\displaystyle{ n \neq 1 }[/math], [math]\displaystyle{ n \neq 2 }[/math])[10] | Cycles |
---|---|---|
2 | [math]\displaystyle{ \varnothing }[/math] | [math]\displaystyle{ \varnothing }[/math] |
3 | [math]\displaystyle{ \varnothing }[/math] | [math]\displaystyle{ \varnothing }[/math] |
4 | 13 | 3 → 12 → 3 |
5 | 144 | [math]\displaystyle{ \varnothing }[/math] |
6 | 41, 42 | [math]\displaystyle{ \varnothing }[/math] |
7 | [math]\displaystyle{ \varnothing }[/math] | 36 → 2055 → 465 → 2343 → 53 → 240 → 36 |
8 | [math]\displaystyle{ \varnothing }[/math] |
3 → 6 → 1320 → 12 175 → 12051 → 175 |
9 | 62558 | |
10 | 145, 40585 |
871 → 45361 → 871[9] 872 → 45362 → 872[8] |
See also
- Arithmetic dynamics
- Dudeney number
- Happy number
- Kaprekar's constant
- Kaprekar number
- Meertens number
- Narcissistic number
- Perfect digit-to-digit invariant
- Perfect digital invariant
- Sum-product number
References
- ↑ Sloane, Neil, A014080, https://oeis.org/A014080
- ↑ Gardner, Martin (1978), "Factorial Oddities", Mathematical Magic Show: More Puzzles, Games, Diversions, Illusions and Other Mathematical Sleight-Of-Mind, Vintage Books, pp. 61 and 64, ISBN 9780394726236, https://books.google.com/books?id=RcnbvQEACAAJ&q=Mathematical+Magic+Show:+More+Puzzles,+Games,+Diversions,+Illusions+and+Other+Mathematical+Sleight-Of-Mind
- ↑ Madachy, Joseph S. (1979), Madachy's Mathematical Recreations, Dover Publications, p. 167, ISBN 9780486237626, https://books.google.com/books?id=UvpUAAAAYAAJ&q=Madachy%27s+Mathematical+Recreations
- ↑ Pickover, Clifford A. (1995), "The Loneliness of the Factorions", Keys to Infinity, John Wiley & Sons, pp. 169–171 and 319–320, ISBN 9780471193340, https://books.google.com/books?id=oXIFAAAACAAJ&q=Keys+to+Infinity
- ↑ Gupta, Shyam S. (2004), "Sum of the Factorials of the Digits of Integers", The Mathematical Gazette (The Mathematical Association) 88 (512): 258–261, doi:10.1017/S0025557200174996
- ↑ Sloane, Neil, A061602, https://oeis.org/A061602
- ↑ Abbott, Steve (2004), "SFD Chains and Factorion Cycles", The Mathematical Gazette (The Mathematical Association) 88 (512): 261–263, doi:10.1017/S002555720017500X
- ↑ 8.0 8.1 Sloane, Neil, A214285, https://oeis.org/A214285
- ↑ 9.0 9.1 Sloane, Neil, A254499, https://oeis.org/A254499
- ↑ Sloane, Neil, A193163, https://oeis.org/A193163
External links
Original source: https://en.wikipedia.org/wiki/Factorion.
Read more |