Astronomy:56 Persei
Observation data Equinox J2000.0]] (ICRS) | |
---|---|
Constellation | Perseus |
Right ascension | 04h 24m 37.46102s[1] |
Declination | +33° 57′ 35.2908″[1] |
Apparent magnitude (V) | 5.77[2] (5.80 + 15.00[3] + 9.16[4] + 11.30[5]) |
Characteristics | |
Spectral type | F4V + DA3.1[3] + F4[6] + ? |
B−V color index | 0.400±0.019[2] |
Astrometry | |
Radial velocity (Rv) | −31.8±2.9[2] km/s |
Proper motion (μ) | RA: +43.818[1] mas/yr Dec.: −90.502[1] mas/yr |
Parallax (π) | 23.5093 ± 0.0909[1] mas |
Distance | 138.7 ± 0.5 ly (42.5 ± 0.2 pc) |
Absolute magnitude (MV) | 2.73[2] |
Details | |
56 Per Aa | |
Mass | 1.53[7] M☉ |
Radius | 1.97+0.05 −0.11[1] R☉ |
Luminosity | 7.166±0.034[8] L☉ |
Surface gravity (log g) | 4.32±0.14[8] cgs |
Temperature | 6,629±225[8] K |
Metallicity [Fe/H] | −0.11±0.08[9] dex |
Age | 1.811[8] Gyr |
56 Per Ab | |
Mass | 0.90±0.12[10] M☉ |
Surface gravity (log g) | 8.46±0.2[10] cgs |
Temperature | 16,420±420[10] K |
Other designations | |
Database references | |
SIMBAD | data |
56 Persei is at least a triple star[10] and possibly a quadruple star[3] system in the northern constellation of Perseus. It is visible to the naked eye as a dim point of light with a combined apparent visual magnitude of 5.77.[2] The system is located 139 light-years (42.5 pc) distant from the Sun based on parallax,[1] but is drifting closer with a radial velocity of −32 km/s.[2]
The main component is a binary system[12] with an orbital period of 47.3 years and a semimajor axis of 17.60 astronomical unit|AU. The primary, designated component Aa, is an F-type main-sequence star with a stellar classification of F4V, a star that is currently fusing its core hydrogen.[7] It is 1.8[8] billion years old with 1.5[7] times the mass of the Sun and twice[1] the Sun's radius. It is radiating 7[8] times the luminosity of the Sun from its photosphere at an effective temperature of 6,629 K.[8]
The companion, component Ab, is a hydrogen–rich white dwarf star with a class of DA3.1,[3] having begun its main sequence life with more mass than the current primary and thus evolved into a compact star more rapidly. It now has 90% of the Sun's mass – much higher than the 0.6 M☉ for an average white dwarf – and an effective temperature of 16,420 K;[10] contributing an ultraviolet excess to the system.[3]
Component B shares a common linear motion through space with the primary, and thus may form a third member of the system. This star has 0.84 times the mass of the Sun and a projected separation of 178.2 astronomical unit|AU from the primary.[7] The Washington Double Star Catalogue has it classified as a double star, with a magnitude 11.30 companion at an angular separation of 0.60″ along a position angle of 292°, as of 2002.[5]
References
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Brown, A. G. A. (August 2018). "Gaia Data Release 2: Summary of the contents and survey properties". Astronomy & Astrophysics 616: A1. doi:10.1051/0004-6361/201833051. Bibcode: 2018A&A...616A...1G. Gaia DR2 record for this source at VizieR.
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 Anderson, E.; Francis, Ch. (2012), "XHIP: An extended hipparcos compilation", Astronomy Letters 38 (5): 331, doi:10.1134/S1063773712050015, Bibcode: 2012AstL...38..331A.
- ↑ 3.0 3.1 3.2 3.3 3.4 Holberg, J. B. et al. (2013), "Where are all the Sirius-like binary systems?", Monthly Notices of the Royal Astronomical Society 435 (3): 2077, doi:10.1093/mnras/stt1433, Bibcode: 2013MNRAS.435.2077H.
- ↑ Fabricius, C. et al. (2002), "The Tycho double star catalogue", Astronomy and Astrophysics 384: 180–189, doi:10.1051/0004-6361:20011822, Bibcode: 2002A&A...384..180F.
- ↑ 5.0 5.1 Mason, B. D. et al. (2014), "The Washington Visual Double Star Catalog", The Astronomical Journal 122 (6): 3466, doi:10.1086/323920, Bibcode: 2001AJ....122.3466M
- ↑ Cannon, Annie J.; Mayall, Margaret Walton (1949), "The Henry Draper extension. II", Annals of Harvard College Observatory 112: 1–295, Bibcode: 1949AnHar.112....1C.
- ↑ 7.0 7.1 7.2 7.3 Tokovinin, A.; Kiyaeva, O. (2015), "Eccentricity distribution of wide binaries", Monthly Notices of the Royal Astronomical Society 456 (2): 2070, doi:10.1093/mnras/stv2825, Bibcode: 2016MNRAS.456.2070T.
- ↑ 8.0 8.1 8.2 8.3 8.4 8.5 8.6 David, Trevor J.; Hillenbrand, Lynne A. (2015), "The Ages of Early-Type Stars: Strömgren Photometric Methods Calibrated, Validated, Tested, and Applied to Hosts and Prospective Hosts of Directly Imaged Exoplanets", The Astrophysical Journal 804 (2): 146, doi:10.1088/0004-637X/804/2/146, Bibcode: 2015ApJ...804..146D.
- ↑ Gáspár, András; Rieke, George H.; Ballering, Nicholas (2016), "The Correlation between Metallicity and Debris Disk Mass", The Astrophysical Journal 826 (2): 171, doi:10.3847/0004-637X/826/2/171, Bibcode: 2016ApJ...826..171G.
- ↑ 10.0 10.1 10.2 10.3 10.4 Landsman, Wayne et al. (March 1996), "The White-Dwarf Companions of 56 Persei and HR 3643", Publications of the Astronomical Society of the Pacific 108: 250, doi:10.1086/133718, Bibcode: 1996PASP..108..250L.
- ↑ "54 Per". SIMBAD. Centre de données astronomiques de Strasbourg. http://simbad.u-strasbg.fr/simbad/sim-basic?Ident=54+Per.
- ↑ Eggleton, P. P.; Tokovinin, A. A. (September 2008), "A catalogue of multiplicity among bright stellar systems", Monthly Notices of the Royal Astronomical Society 389 (2): 869–879, doi:10.1111/j.1365-2966.2008.13596.x, Bibcode: 2008MNRAS.389..869E.
Original source: https://en.wikipedia.org/wiki/56 Persei.
Read more |