Astronomy:WASP-17
Observation data Equinox J2000.0]] (ICRS) | |
---|---|
Constellation | Scorpius |
Right ascension | 15h 59m 50.9473s[1] |
Declination | −28° 03′ 42.327″[1] |
Apparent magnitude (V) | 11.500[2] |
Characteristics | |
Spectral type | F6V |
Astrometry | |
Proper motion (μ) | RA: −6.600±1.557[1] mas/yr Dec.: −8.485±0.774[1] mas/yr |
Parallax (π) | 2.4366 ± 0.0518[1] mas |
Distance | 1,340 ± 30 ly (410 ± 9 pc) |
Details | |
Mass | 1.2 M☉ |
Radius | 1.38 R☉ |
Surface gravity (log g) | 4.14 ± 0.03[3] cgs |
Temperature | 6509 ± 86[3] K |
Metallicity [Fe/H] | –0.02 ± 0.09[3] dex |
Rotational velocity (v sin i) | 10.6 ± 1.3[3] km/s |
Age | 3 Gyr |
Other designations | |
Dìwö, 1SWASP J155950.94−280342.3, USNO-B1.0 0619-0419495, 2MASS J15595095-2803422, TYC2 6787-1927-1, Gaia DR2 6042793005779654656 | |
Database references | |
SIMBAD | data |
Exoplanet Archive | data |
Extrasolar Planets Encyclopaedia | data |
WASP-17 is an F-type main sequence star approximately 1,300 light-years away in the constellation Scorpius.[4][1][5]
WASP-17 is named Dìwö. The name was selected in the NameExoWorlds campaign by Costa Rica, during the 100th anniversary of the IAU. Dìwö in Bribri language means the sun.[6][7]
The star, although similar to Sun in terms of overall contents of heavy elements, is depleted of carbon. Carbon to oxygen molar ratio of 0.18±0.04 for WASP-17 is well below solar ratio of 0.55.[8]
Planetary system
As of 2009, an extrasolar planet has been confirmed to orbit the star. The star is unusual in that it has an orbiting exoplanet, WASP-17b,[9][10] which is believed to orbit in the opposite direction to the star's spin and is said to be twice the size of Jupiter, but half its mass. The planet is also named Ditsö̀. It is subject to intensive photo-evaporation, and may be completely destroyed within one billion years from now.[11]
The planet was discovered by the SuperWASP project, hence the name.
Companion (in order from star) |
Mass | Semimajor axis (AU) |
Orbital period (days) |
Eccentricity | Inclination | Radius |
---|---|---|---|---|---|---|
b / Ditsö̀ | 0.486 (± 0.032) MJ | 0.0515 (± 0.00034) | 3.735438 (± 6.8e-06) | 0.028 +0.018−0.015 | — | — |
References
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 Brown, A. G. A et al. (2016). "Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties". Astronomy and Astrophysics 595: A2. doi:10.1051/0004-6361/201629512. Bibcode: 2016A&A...595A...2G. https://www.aanda.org/articles/aa/full_html/2016/11/aa29512-16/aa29512-16.html.Gaia Data Release 1 catalog entry
- ↑ Maxted, P. F. L. et al. (2011). "UBV(RI)C photometry of transiting planet hosting stars". Monthly Notices of the Royal Astronomical Society 418 (2): 1039–1042. doi:10.1111/j.1365-2966.2011.19554.x. Bibcode: 2011MNRAS.418.1039M.
- ↑ 3.0 3.1 3.2 3.3 Torres, Guillermo et al. (2012). "Improved Spectroscopic Parameters for Transiting Planet Hosts". The Astrophysical Journal 757 (2): 161. doi:10.1088/0004-637X/757/2/161. Bibcode: 2012ApJ...757..161T.
- ↑ Anderson, D. R. et al. (2010). "WASP-17b: An Ultra-Low Density Planet in a Probable Retrograde Orbit". The Astrophysical Journal 709 (1): 159–167. doi:10.1088/0004-637X/709/1/159. Bibcode: 2010ApJ...709..159A.
- ↑ "Newfound Planet Orbits Backward". 12 August 2009. http://www.space.com/scienceastronomy/090812-backward-planet.html.
- ↑ "Approved names" (in en). http://www.nameexoworlds.iau.org/final-results.
- ↑ "International Astronomical Union | IAU". https://www.iau.org/news/pressreleases/detail/iau1912/.
- ↑ Polanski, Alex S.; Crossfield, Ian J. M.; Howard, Andrew W.; Isaacson, Howard; Rice, Malena (2022), Chemical Abundances for 25 JWST Exoplanet Host Stars with KeckSpec
- ↑ BBC NEWS | Science & Environment |
- ↑ New-found Planet Orbits Backward
- ↑ D. Ehrenreich and J.-M. Désert, "Mass-loss rates for transiting exoplanets", 2011
Original source: https://en.wikipedia.org/wiki/WASP-17.
Read more |