Astronomy:HD 150248

From HandWiki
Short description: Star in the constellation of Scorpius
HD 150248
Observation data
Equinox J2000.0]] (ICRS)
Constellation Scorpius[1]
Right ascension  16h 41m 49.79351s[2]
Declination −45° 22′ 07.5128″[2]
Apparent magnitude (V) 7.02[3]
Characteristics
Spectral type G3V + ?[4]
U−B color index +0.17[3]
B−V color index +0.68[3]
Astrometry
Proper motion (μ) RA: +62.016[2] mas/yr
Dec.: −93.481[2] mas/yr
Parallax (π)35.958 ± 0.0501[2] mas
Distance90.7 ± 0.1 ly
(27.81 ± 0.04 pc)
Absolute magnitude (MV)+4.90[1]
Orbit[5]
Period (P)3253.26+0.56
−0.55
days
Semi-major axis (a)4.46+0.12
−0.13
 astronomical unit|AU
Eccentricity (e)0.66872+0.00090
−0.00092
Inclination (i)55.97±0.47°
Argument of periastron (ω)
(secondary)
356.59±0.13°
Semi-amplitude (K1)
(primary)
1.993±0.002 km/s
Details
A
Mass0.96±0.01[6] M
Radius1.02±0.02[5] R
Luminosity1.16+0.13
−0.11
[5] L
Surface gravity (log g)4.37±0.01[6] cgs
Temperature5,715±3[6] K
Metallicity [Fe/H]−0.091±0.003[6] dex
Rotational velocity (v sin i)1.43±0.12[7] km/s
Age8.10+0.24
−0.39
[6] Gyr
B
Mass140±8[5] MJup
Other designations
CD−45°10847, HD 150248, HIP 81746
Database references
SIMBADdata

HD 150248 is a binary star system[5] in the constellation Scorpius, close to the border with Ara. Its primary component is a G-type star, notable for being a near solar twin.[7] HD 150248's photometric color is also very close to that of the Sun; however, it has a lower abundance of metals, and has an apparent visual magnitude of 7.02. At 8.1 billion years old, this star is over three billion years older than the Sun.

To date, no solar twin with an exact match to that of the Sun has been found. However, there are some stars that come very close to being identical, and thus considered solar twins by the astronomical community. An exact solar twin would be a G2V star with a 5772 K temperature, be 4.6 billion years old, with solar metallicity, and a 0.1% solar luminosity variation.[8] Stars with an age of 4.6 billion years, such as the Sun, are at the most stable state. Proper metallicity and size are also very important to low luminosity variation.[9][10][11]

Both components of this system orbit with an period of 3,253.2 days (8.907 years) and have a high eccentricity of 0.66872, putting the stars as close as 1.48 AU in the periastron, and as distant as 7.42 AU in the apoastron. A circumbinary companion would need to orbit at a separation of at least 18.4 AU to have a stable orbit. Meanwhile, for an S-type companion orbiting either A or B, this would be less than 0.446 and 0.186  AU, respectively.[5]

Comparison to the Sun

Distance
(ly)
Stellar
Type
Temperature
(K)
Metallicity
(dex)
Age
(Gyr)
Notes
Sun 0.00 G2V 5,778 +0.00 4.6 [12]
HD 150248 [13] 88 G3V 5,715 −0.091 8.10

See also

  • List of nearest stars

References

  1. 1.0 1.1 Anderson, E.; Francis, Ch. (2012). "XHIP: An extended hipparcos compilation". Astronomy Letters 38 (5): 331. doi:10.1134/S1063773712050015. Bibcode2012AstL...38..331A. 
  2. 2.0 2.1 2.2 2.3 2.4 Vallenari, A. et al. (2022). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy & Astrophysics. doi:10.1051/0004-6361/202243940  Gaia DR3 record for this source at VizieR.
  3. 3.0 3.1 3.2 Przybylski, A.; Kennedy, P. M. (1965). "Radial velocities and three-colour photometry of 166 southern stars". Monthly Notices of the Royal Astronomical Society 131: 95–104. doi:10.1093/mnras/131.1.95. Bibcode1965MNRAS.131...95P. 
  4. Gray, R. O.; Corbally, C. J.; Garrison, R. F.; McFadden, M. T.; Bubar, E. J.; McGahee, C. E.; O'Donoghue, A. A.; Knox, E. R. (2006). "Contributions to the Nearby Stars (NStars) Project: Spectroscopy of Stars Earlier than M0 within 40 pc-The Southern Sample". The Astronomical Journal 132 (1): 161–170. doi:10.1086/504637. Bibcode2006AJ....132..161G. 
  5. 5.0 5.1 5.2 5.3 5.4 5.5 Barbato, D.; Ségransan, D.; Udry, S.; Unger, N.; Bouchy, F.; Lovis, C.; Mayor, M.; Pepe, F. et al. (2023-06-01). "The CORALIE survey for southern extrasolar planets - XIX. Brown dwarfs and stellar companions unveiled by radial velocity and astrometry" (in en). Astronomy & Astrophysics 674: A114. doi:10.1051/0004-6361/202345874. ISSN 0004-6361. Bibcode2023A&A...674A.114B.  HD 150248's database entry at VizieR.
  6. 6.0 6.1 6.2 6.3 6.4 Martos, Giulia; Meléndez, Jorge; Rathsam, Anne; Carvalho-Silva, Gabriela (2023-04-21). "Metallicity and age effects on lithium depletion in solar analogues". Monthly Notices of the Royal Astronomical Society 522 (3): 3217–3226. doi:10.1093/mnras/stad1177. ISSN 0035-8711. Bibcode2023MNRAS.522.3217M. 
  7. 7.0 7.1 dos Santos, Leonardo A. et al. (August 2016). "The Solar Twin Planet Search. IV. The Sun as a typical rotator and evidence for a new rotational braking law for Sun-like stars". Astronomy & Astrophysics 592: 8. doi:10.1051/0004-6361/201628558. A156. Bibcode2016A&A...592A.156D. 
  8. NASA Science Editorial Team (Jan 8, 2013). "Solar Variability and Terrestrial Climate". https://science.nasa.gov/science-news/science-at-nasa/2013/08jan_sunclimate/. 
  9. "Stellar Luminosity Calculator". http://astro.unl.edu/classaction/animations/stellarprops/stellarlum.html. 
  10. The Effects of Solar Variability on Earth's Climate. 2012. doi:10.17226/13519. ISBN 978-0-309-26564-5. 
  11. Ethan Siegel (June 5, 2013). "Most of Earth’s twins aren’t identical". http://scienceblogs.com/startswithabang/2013/06/05/most-of-earths-twins-arent-identical-or-even-close/. 
  12. Williams, D.R. (2004). "Sun Fact Sheet". NASA. http://nssdc.gsfc.nasa.gov/planetary/factsheet/sunfact.html. 
  13. HD 150248 at SIMBAD - Ids - Bibliography - Image.