Astronomy:WASP-36

From HandWiki
Short description: Star in the constellation Hydra
WASP-36
Observation data
Equinox J2000.0]] (ICRS)
Constellation Hydra
Right ascension  08h 46m 19.2978s
Declination −08° 01′ 37.0127″
Apparent magnitude (V) 12.7
Characteristics
Evolutionary stage main sequence star
Spectral type G2V
B−V color index 0.4
J−H color index 0.256
J−K color index 0.315
Astrometry
Radial velocity (Rv)-13.2169±0.0024 km/s
Proper motion (μ) RA: -4.077±0.053 mas/yr
Dec.: -8.710±0.041 mas/yr
Parallax (π)2.5599 ± 0.0345 mas
Distance1,270 ± 20 ly
(391 ± 5 pc)
Details[1][2]
Mass1.03+0.033−0.036[3] M
Radius0.966+0.013−0.014[3] R
Luminosity1.202+0.089−0.081[3] L
Surface gravity (log g)4.4807+0.0086−0.0085[3] cgs
Temperature6150+110−100[3] K
Metallicity [Fe/H]-0.26±0.10 dex
Rotational velocity (v sin i)3.3±1.2 km/s
Age1.01+1.1−0.68 Gyr
Other designations
WASP-36, DENIS J084619.3-080136, 2MASS J08461929-0801370, Gaia DR2 5750936092375254016[4]
Database references
SIMBADdata

WASP-36 is a yellow main sequence star in the Hydra constellation.

Star characteristics

WASP-36 is a yellow main sequence star of spectral class G2, similar to the Sun.[5] It has an unconfirmed stellar companion with apparent magnitude 14.03.[6][7]

Planetary system

In 2010, the SuperWASP survey found the Hot Jupiter class planet WASP-36b using the transit method.[8] Its temperature was measured to be 1705±44 K.[9] The planetary transmission spectrum taken in 2016 has turned out to be anomalous: the planet appears to be surrounded by a blue-tinted halo that is too wide to be an atmosphere and may represent a measurement error.[10]

Planetary dayside temperature measured in 2020 is 1440+150−160 K.[11]

The WASP-36 planetary system[1][12][2]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b 2.295±0.058 MJ 0.02643±0.00026 1.5373639±0.0000014 0.0087+0.0097−0.0061[3] 83.42+0.12−0.11[3]° 1.270+0.018−0.019[3] RJ

References

  1. 1.0 1.1 Smith, A. M. S.; Anderson, D. R.; Collier Cameron, A.; Gillon, M.; Hellier, C.; Lendl, M.; Maxted, P. F. L.; Queloz, D. et al. (2012). "WASP-36b: A NEW TRANSITING PLANET AROUND a METAL-POOR G-DWARF, AND AN INVESTIGATION INTO ANALYSES BASED ON a SINGLE TRANSIT LIGHT CURVE". The Astronomical Journal 143 (4): 81. doi:10.1088/0004-6256/143/4/81. Bibcode2012AJ....143...81S. 
  2. 2.0 2.1 Maciejewski, G.; Dimitrov, D.; Mancini, L.; Southworth, J.; Ciceri, S.; D'Ago, G.; Bruni, I.; Raetz, St. et al. (2016). "New transit observations for HAT-P-30 b, HAT-P-37 b, TrES-5 b, WASP-28 b, WASP-36 b, and WASP-39 B". Acta Astronomica 66 (1): 55. Bibcode2016AcA....66...55M. 
  3. 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 Wang, Xian-Yu; Wang, Yong-Hao; Wang, Songhu; Wu, Zhen-Yu; Rice, Malena; Zhou, Xu; Hinse, Tobias C.; Liu, Hui-Gen et al. (2021), "Transiting Exoplanet Monitoring Project (TEMP). VI. The Homogeneous Refinement of System Parameters for 39 Transiting Hot Jupiters with 127 New Light Curves", The Astrophysical Journal Supplement Series 255 (1): 15, doi:10.3847/1538-4365/ac0835, Bibcode2021ApJS..255...15W 
  4. WASP-36 -- Star
  5. "Wasp-36b". NASA. https://exoplanets.nasa.gov/exoplanet-catalog/5671/wasp-36-b/. 
  6. Ngo, Henry; Knutson, Heather A.; Hinkley, Sasha; Bryan, Marta; Crepp, Justin R.; Batygin, Konstantin; Crossfield, Ian; Hansen, Brad et al. (2016). "FRIENDS OF HOT JUPITERS. IV. STELLAR COMPANIONS BEYOND 50 au MIGHT FACILITATE GIANT PLANET FORMATION, BUT MOST ARE UNLIKELY TO CAUSE KOZAI–LIDOV MIGRATION". The Astrophysical Journal 827 (1): 8. doi:10.3847/0004-637X/827/1/8. Bibcode2016ApJ...827....8N. 
  7. Evans, D. F.; Southworth, J.; Maxted, P. F. L.; Skottfelt, J.; Hundertmark, M.; Jørgensen, U. G.; Dominik, M.; Alsubai, K. A. et al. (2016). "High-resolution Imaging of Transiting Extrasolar Planetary systems (HITEP)". Astronomy & Astrophysics 589: A58. doi:10.1051/0004-6361/201527970. Bibcode2016A&A...589A..58E. 
  8. WASP-36 b Solar analogue 1.5 day orbital period 2.4 Jupiter masses 1.4 Jupiter radii
  9. Garhart, Emily; Deming, Drake; Mandell, Avi; Knutson, Heather A.; Wallack, Nicole; Burrows, Adam; Fortney, Jonathan J.; Hood, Callie et al. (2020). "Statistical Characterization of Hot Jupiter Atmospheres Using Spitzer's Secondary Eclipses". The Astronomical Journal 159 (4): 137. doi:10.3847/1538-3881/ab6cff. Bibcode2020AJ....159..137G. 
  10. Mancini, L.; Kemmer, J.; Southworth, J.; Bott, K.; Mollière, P.; Ciceri, S.; Chen, G.; Henning, Th. (2016). "An optical transmission spectrum of the giant planet WASP-36 b". Monthly Notices of the Royal Astronomical Society 459 (2): 1393–1402. doi:10.1093/mnras/stw659. Bibcode2016MNRAS.459.1393M. 
  11. Wong, Ian; Shporer, Avi; Daylan, Tansu; Benneke, Björn; Fetherolf, Tara; Kane, Stephen R.; Ricker, George R.; Vanderspek, Roland et al. (2020), "Systematic phase curve study of known transiting systems from year one of the TESS mission", The Astronomical Journal 160 (4): 155, doi:10.3847/1538-3881/ababad, Bibcode2020AJ....160..155W 
  12. Zhou, G.; Bayliss, D. D. R.; Kedziora-Chudczer, L.; Tinney, C. G.; Bailey, J.; Salter, G.; Rodriguez, J. (2015). "Secondary eclipse observations for seven hot-Jupiters from the Anglo-Australian Telescope". Monthly Notices of the Royal Astronomical Society 454 (3): 3002–3019. doi:10.1093/mnras/stv2138. Bibcode2015MNRAS.454.3002Z.