Biology:Parvalbumin

From HandWiki
A representation of the 3D structure of the protein myoglobin showing turquoise α-helices.
Generic protein structure example
Parvalbumin
Identifiers
Symbol?
InterProIPR008080

Parvalbumin (PV) is a calcium-binding protein with low molecular weight (typically 9-11 kDa). In humans, it is encoded by the PVALB gene. It is not a member of the albumin family; it is named for its size (parv-, from Latin parvus small) and its ability to coagulate.

It has three EF hand motifs and is structurally related to calmodulin and troponin C. Parvalbumin is found in fast-contracting muscles, where its levels are highest, as well as in the brain and some endocrine tissues.

Parvalbumin is a small, stable protein containing EF-hand type calcium binding sites. It is involved in calcium signaling. Typically, this protein is broken into three domains, domains AB, CD and EF, each individually containing a helix-loop-helix motif.[1] The AB domain houses a two amino-acid deletion in the loop region, whereas domains CD and EF contain the N-terminal and C-terminal, respectively.[1]

Calcium binding proteins like parvalbumin play a role in many physiological processes, namely cell-cycle regulation, second messenger production, muscle contraction, organization of microtubules and phototransduction.[2] Therefore, calcium-binding proteins must distinguish calcium in the presence of high concentrations of other metal ions. The mechanism for the calcium selectivity has been extensively studied.[2][3]

Location and function

Pvalb is expressed in the reticular nucleus of the thalamus in the postnatal day 56 mouse. Allen Brain Atlases
In the cerebellum of adult mice Pvalb is expressed in Purkinje cells and molecular layer interneurons. Allen Brain Atlases

Parvalbumin in neural tissue

Parvalbumin is present in some GABAergic interneurons in the nervous system, especially the reticular thalamus,[4] and expressed predominantly by chandelier and basket cells in the cortex. In the cerebellum, PV is expressed in Purkinje cells and molecular layer interneurons.[5] In the hippocampus, PV+ interneurons are subdivided into basket, axo-axonic, and bistratified cells, each subtype targeting distinct compartments of pyramidal cells.[6]

PV interneurons' connections are mostly perisomatic (around the cell body of neurons). Most of the PV interneurons are fast-spiking. They are also thought to give rise to gamma waves recorded in EEG.

PV-expressing interneurons represent approximately 25% of GABAergic cells in the primate DLPFC.[7][8] Other calcium-binding protein markers are calretinin (most abundant subtype in DLPFC, about 50%) and calbindin. Interneurons are also divided into subgroups by the expression of neuropeptides such as somatostatin, neuropeptide Y, cholecystokinin.

Parvalbumin in muscular tissue

PV is known to be involved in relaxation of fast-twitch muscle fibers.[9][10] This function is associated with PV role in calcium sequestration.

During muscle contraction, the action potential stimulate voltage-sensitive proteins in T-tubules membrane. These proteins stimulate the opening of Ca2+ channels in the sarcoplasmic reticulum, leading to release of Ca2+ in the sarcoplasm. The Ca2+ ions bind to troponin, what causes the displacement of tropomyosin, a protein that prevents myosin walking along actin. The displacement of tropomyosin exposes the myosin-binding sites on actin, permitting muscle contraction.[11]

This way, while muscle contraction is driven by Ca2+ release, muscle relaxation is driven by Ca2+ removal from sarcoplasm. Along with Ca2+ pumps, PV contributes to Ca2+ removal from cytoplasm: PV binds to Ca2+ ions in the sarcoplasm, and then shuttles it to the sarcoplasmic reticulum.[12]

Role in pathology

Decreased PV and GAD67 expression was found in PV+ GABAergic interneurons in schizophrenia.[13][14]

Parvalbumin and food allergy

Parvalbumin has been identified as an allergen causing fish allergy (but not shellfish allergy).[15][16][17][18] Bony fishes manifest β-parvalbumin and cartilaginous fishes such as sharks and rays manifest α-parvalbumin; allergenicity to bony fishes has a low cross-reactivity to cartilaginous fishes.[16]

History

The protein was discovered in 1965 as a component of the fast-twitching white muscle of fish. It was described as a low molecular-weight "albumin".[19] It is unknown who coined the term parvalbumin, but the word is already in use by 1967.[20]

References

  1. 1.0 1.1 "Molecular mechanisms of calcium and magnesium binding to parvalbumin". Biophysical Journal 82 (3): 1133–46. March 2002. doi:10.1016/S0006-3495(02)75472-6. PMID 11867433. Bibcode2002BpJ....82.1133C. 
  2. 2.0 2.1 "Metal-ion affinity and specificity in EF-hand proteins: coordination geometry and domain plasticity in parvalbumin". Structure 7 (10): 1269–78. October 1999. doi:10.1016/S0969-2126(00)80060-X. PMID 10545326. 
  3. "Competition among metal ions for protein binding sites: determinants of metal ion selectivity in proteins". Chemical Reviews 114 (1): 538–56. January 2014. doi:10.1021/cr4004665. PMID 24040963. 
  4. "Parvalbumin-containing GABAergic interneurons in the rat neostriatum". The Journal of Comparative Neurology 302 (2): 197–205. December 1990. doi:10.1002/cne.903020202. PMID 2289971. 
  5. "'New' functions for 'old' proteins: the role of the calcium-binding proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice". Cerebellum 1 (4): 241–58. December 2002. doi:10.1080/147342202320883551. PMID 12879963. 
  6. "Complementary roles of cholecystokinin- and parvalbumin-expressing GABAergic neurons in hippocampal network oscillations". The Journal of Neuroscience 25 (42): 9782–93. October 2005. doi:10.1523/JNEUROSCI.3269-05.2005. PMID 16237182. free full text
  7. "Local circuit neurons immunoreactive for calretinin, calbindin D-28k or parvalbumin in monkey prefrontal cortex: distribution and morphology". The Journal of Comparative Neurology 341 (1): 95–116. March 1994. doi:10.1002/cne.903410109. PMID 8006226. 
  8. "Local circuit neurons in the medial prefrontal cortex (areas 24a,b,c, 25 and 32) in the monkey: II. Quantitative areal and laminar distributions". The Journal of Comparative Neurology 364 (4): 609–36. January 1996. doi:10.1002/(SICI)1096-9861(19960122)364:4<609::AID-CNE2>3.0.CO;2-7. PMID 8821450. 
  9. "Calcium-binding protein parvalbumin is associated with fast contracting muscle fibres". Nature 297 (5866): 504–6. June 1982. doi:10.1038/297504a0. PMID 6211622. Bibcode1982Natur.297..504C. 
  10. "Correlation of parvalbumin concentration with relaxation speed in mammalian muscles". Proceedings of the National Academy of Sciences of the United States of America 79 (23): 7243–7. December 1982. doi:10.1073/pnas.79.23.7243. PMID 6961404. Bibcode1982PNAS...79.7243H. 
  11. Alberts, Bruce; Johnson; Lewis; Raff; Roberts; Walter (2002). "Molecular Motors". Molecular Biology of the Cell (4th ed.). New York: Garland Science. ISBN 0-8153-3218-1. https://www.ncbi.nlm.nih.gov/books/NBK21054/. 
  12. "A Ca(2+)-binding protein with numerous roles and uses: parvalbumin in molecular biology and physiology". BioEssays 31 (4): 410–21. April 2009. doi:10.1002/bies.200800170. PMID 19274659. 
  13. "Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia". The Journal of Neuroscience 23 (15): 6315–26. July 2003. doi:10.1523/JNEUROSCI.23-15-06315.2003. PMID 12867516. 
  14. "GABAergic interneuron origin of schizophrenia pathophysiology". Neuropharmacology 62 (3): 1574–83. March 2012. doi:10.1016/j.neuropharm.2011.01.022. PMID 21277876. 
  15. "Current immunological and molecular biological perspectives on seafood allergy: a comprehensive review". Clin Rev Allergy Immunol 46 (3): 180–97. June 2014. doi:10.1007/s12016-012-8336-9. PMID 23242979. 
  16. 16.0 16.1 "Allergenicity of bony and cartilaginous fish - molecular and immunological properties". Clin. Exp. Allergy 47 (3): 300–12. March 2017. doi:10.1111/cea.12892. PMID 28117510. 
  17. "Immunological cross-reactivity between four distant parvalbumins-Impact on allergen detection and diagnostics". Mol. Immunol. 63 (2): 437–48. February 2015. doi:10.1016/j.molimm.2014.09.019. PMID 25451973. 
  18. "Advances on the molecular characterization, clinical relevance, and detection methods of Gadiform parvalbumin allergens". Crit Rev Food Sci Nutr 57 (15): 3281–296. October 2017. doi:10.1080/10408398.2015.1113157. PMID 26714098. 
  19. Hamoir, G; Konosu, S (1 July 1965). "Carp Myogens of White and Red Muscles. General Composition and Isolation of Low-Molecular-Weight Components of Abnormal Amino Acid Composition". Biochemical Journal 96 (1): 85–97. doi:10.1042/bj0960085. PMID 14343157. 
  20. Pechère, JF (January 1968). "Muscular parvalbumins as homologous proteins.". Comparative Biochemistry and Physiology 24 (1): 289–95. doi:10.1016/0010-406x(68)90978-x. PMID 5645516. 

External links