Biology:Plakoglobin

From HandWiki
Short description: Mammalian protein found in Homo sapiens


A representation of the 3D structure of the protein myoglobin showing turquoise α-helices.
Generic protein structure example


Plakoglobin, also known as junction plakoglobin or gamma-catenin, is a protein that in humans is encoded by the JUP gene.[1] Plakoglobin is a member of the catenin protein family and homologous to β-catenin. Plakoglobin is a cytoplasmic component of desmosomes and adherens junctions structures located within intercalated discs of cardiac muscle that function to anchor sarcomeres and join adjacent cells in cardiac muscle. Mutations in plakoglobin are associated with arrhythmogenic right ventricular dysplasia.

Structure

Human plakoglobin is 81.7 kDa in molecular weight and 745 amino acids long.[2] The JUP gene contains 13 exons spanning 17 kb on chromosome 17q21.[3] Plakoglobin is a member of the catenin family, since it contains a distinct repeating amino acid motif called the armadillo repeat.[1] Plakoglobin is highly similar to β-catenin; both have 12 armadillo repeats as well as N-terminal and C-terminal globular domains of unknown structure.[4] Plakoglobin was originally identified as a component of desmosomes, where it can bind to the cadherin family member desmoglein I. Plakoglobin also associates with classical cadherins such as E-cadherin; in that context, it was called gamma-catenin. Plakoglobin forms distinct complexes with cadherins and desmosomal cadherins.

Function

Plakoglobin is a major cytoplasmic component of both desmosomes and adherens junctions, and is the only known constituent common to submembranous plaques in both of these structures,[5] which are located at the intercalated disc (ICD) of cardiomyocytes. Plakoglobin links cadherins to the actin cytoskeleton. Plakoglobin binds to conserved regions of desmoglein and desmocollin at intracellular catenin-binding sites to assemble desmosomes.[6][7]

Plakoglobin is essential for normal development of intercalated discs and stability of cardiac muscle. Transgenic mice homozygous for a null mutation of the JUP gene die around embryonic day 12 from substantial defects in adherens junctions and a lack of functional desmosomes in the heart.[8][9] Further studies showed that cardiac fibers obtained from JUP-null embryonic mice had decreased passive compliance albeit normal attachment of sarcomeres to adherens junctions.[10]

In additional studies, an inducible cardiac-specific plakoglobin knockout mice were generated. Transgenic mice displayed a similar phenotype as arrhythmogenic right ventricular cardiomyopathy patients, with loss of cardiomyocytes, fibrosis and cardiac dysfunction, as well as alterations in desmosome protein content and gap junction remodeling. Hearts also exhibited increases in β-catenin signaling.[11][12] Further investigations on the role of β-catenin and plakoglobin in the heart generated a double knockout of these two proteins. Mice exhibited cardiomyopathy, fibrosis, conduction abnormalities and sudden cardiac death, presumably via spontaneous lethal ventricular arrhythmias. Mice also showed a decrease in gap junction structures at intercalated discs.[13]

Intracellular plakoglobin expression is controlled by Wnt signaling and ubiquitin-proteasome-dependent degradation. Phosphorylation of N-terminal Serines by a “destruction complex” composed of glycogen synthase kinase 3β (GSK3β) and scaffold proteins adenomatous polyposis coli (APC) and axin targets plakoglobin for degradation.[14][15][16][31–33]. The phosphorylated motif is recognized by β-TrCP, a ubiquitin ligase that targets plakoglobin 26S proteasome-dependent degradation.[17] Plakoglobin is also O-glycosylated near its N-terminal destruction box.

Clinical significance

Mutation of the JUP gene encoding plakoglobin has been implicated as one of the causes of the cardiomyopathy known as arrhythmogenic right ventricular dysplasia (ARVD) or arrhythmogenic right ventricular cardiomyopathy; mutations in JUP specifically causes an autosomal recessive form referred to as Naxos disease.[18][19][20] This form of was first identified in a small cluster of families on the Greek island of Naxos. The phenotype of the Naxos disease variant of ARVD is unique in that it involves the hair and skin as well as the right ventricle. Affected individuals have kinky, wooly hair; there is also palmar and plantar erythema at birth that progresses to keratosis as the palms and soles of the feet are used in crawling and walking.[21][22][23] These findings co-segregate 100% with the development of ARVD by early adolescence.

It has become clear that ARVD/ARVC is a disease of the cardiac muscle desmosome; advances in molecular genetics have illuminated this notion.[24][25][26][27][28][29][30][31][32]

Studies investigating the role of plakoglobin in disease pathology have found that suppression of desmoplakin expression by siRNA led to the nuclear localization of plakoglobin, resulting in a reduction in Wnt signaling via Tcf/Lef1 and ensued pathogenesis of ARVC.[33] Specifically, adipogenic factor expression was induced and cardiac progenitor cells at the epicardium were differentiated to adipocytes.[34]

Non-invasive cardiac screening identified T-wave inversion, abnormalities in right ventricular wall motion, and frequent ventricular extrasystoles as sensitive and specific markers of a JUP mutation.[35] Additional studies have shown that immunohistochemical analysis of cardiac muscle desmosomal proteins is also a sensitive and specific diagnostic text for ARVD/ARVC.[36]

Abnormal distribution of plakoglobin due to mutations in genes encoding for Desmoglein 1 and 3 have also been implicated in Pemphigus vulgaris.[37][38]

Interactions

Plakoglobin has been shown to interact with:


See also

  • Catenin
  • List of conditions caused by problems with junctional proteins

References

  1. 1.0 1.1 "Entrez Gene: JUP junction plakoglobin". https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3728. 
  2. "Protein sequence of human JUP (Uniprot ID: P14923)". http://www.heartproteome.org/copa/ProteinInfo.aspx?QType=Protein%20ID&QValue=P14923. 
  3. "Genomic organization and amplification of the human plakoglobin gene (JUP)". Experimental Dermatology 9 (5): 323–6. Oct 2000. doi:10.1034/j.1600-0625.2000.009005323.x. PMID 11016852. 
  4. "Desmosomes from a structural perspective". Current Opinion in Cell Biology 19 (5): 565–71. Oct 2007. doi:10.1016/j.ceb.2007.09.003. PMID 17945476. 
  5. "Plakoglobin: a protein common to different kinds of intercellular adhering junctions". Cell 46 (7): 1063–73. Sep 1986. doi:10.1016/0092-8674(86)90706-3. PMID 3530498. 
  6. "Desmosomal cadherin binding domains of plakoglobin". The Journal of Biological Chemistry 271 (18): 10904–9. May 1996. doi:10.1074/jbc.271.18.10904. PMID 8631907. 
  7. "Cadherin binding sites of plakoglobin: localization, specificity and role in targeting to adhering junctions". Journal of Cell Science 109 (13): 3069–78. Dec 1996. doi:10.1242/jcs.109.13.3069. PMID 9004041. 
  8. "Targeted mutation of plakoglobin in mice reveals essential functions of desmosomes in the embryonic heart". The Journal of Cell Biology 135 (1): 215–25. Oct 1996. doi:10.1083/jcb.135.1.215. PMID 8858175. 
  9. "Embryonic heart and skin defects in mice lacking plakoglobin". Developmental Biology 180 (2): 780–5. Dec 1996. doi:10.1006/dbio.1996.0346. PMID 8954745. 
  10. "Plakoglobin is essential for myocardial compliance but dispensable for myofibril insertion into adherens junctions". Journal of Cellular Biochemistry 72 (1): 8–15. Jan 1999. doi:10.1002/(sici)1097-4644(19990101)72:1<8::aid-jcb2>3.0.co;2-a. PMID 10025662. 
  11. "Cardiac tissue-restricted deletion of plakoglobin results in progressive cardiomyopathy and activation of {beta}-catenin signaling". Molecular and Cellular Biology 31 (6): 1134–44. Mar 2011. doi:10.1128/MCB.01025-10. PMID 21245375. 
  12. "Restrictive loss of plakoglobin in cardiomyocytes leads to arrhythmogenic cardiomyopathy". Human Molecular Genetics 20 (23): 4582–96. Dec 2011. doi:10.1093/hmg/ddr392. PMID 21880664. 
  13. "Loss of cadherin-binding proteins β-catenin and plakoglobin in the heart leads to gap junction remodeling and arrhythmogenesis". Molecular and Cellular Biology 32 (6): 1056–67. Mar 2012. doi:10.1128/MCB.06188-11. PMID 22252313. 
  14. "Axin directly interacts with plakoglobin and regulates its stability". The Journal of Biological Chemistry 274 (39): 27682–8. Sep 1999. doi:10.1074/jbc.274.39.27682. PMID 10488109. 
  15. "The APC protein and E-cadherin form similar but independent complexes with alpha-catenin, beta-catenin, and plakoglobin". The Journal of Biological Chemistry 270 (10): 5549–55. Mar 1995. doi:10.1074/jbc.270.10.5549. PMID 7890674. 
  16. "Regulation of beta-catenin signaling in the Wnt pathway". Biochemical and Biophysical Research Communications 268 (2): 243–8. Feb 2000. doi:10.1006/bbrc.1999.1860. PMID 10679188. 
  17. "Differential interaction of plakoglobin and beta-catenin with the ubiquitin-proteasome system". Oncogene 19 (16): 1992–2001. Apr 2000. doi:10.1038/sj.onc.1203519. PMID 10803460. 
  18. "Normalization of Naxos plakoglobin levels restores cardiac function in mice". The Journal of Clinical Investigation 125 (4): 1708–12. Apr 2015. doi:10.1172/JCI80335. PMID 25705887. 
  19. "Lack of plakoglobin in epidermis leads to keratoderma". The Journal of Biological Chemistry 287 (13): 10435–43. Mar 2012. doi:10.1074/jbc.M111.299669. PMID 22315228. 
  20. "Genetic bases of arrhythmogenic right ventricular Cardiomyopathy". Heart International 2 (1): 17. 2006. doi:10.4081/hi.2006.17. PMID 21977247. 
  21. "Cardiomyopathy with alopecia and palmoplantar keratoderma (CAPK) is caused by a JUP mutation". The British Journal of Dermatology 165 (4): 917–21. Oct 2011. doi:10.1111/j.1365-2133.2011.10455.x. PMID 21668431. 
  22. "Lack of plakoglobin leads to lethal congenital epidermolysis bullosa: a novel clinico-genetic entity". Human Molecular Genetics 20 (9): 1811–9. May 2011. doi:10.1093/hmg/ddr064. PMID 21320868. 
  23. "Homozygous mutations in the 5' region of the JUP gene result in cutaneous disease but normal heart development in children". The Journal of Investigative Dermatology 130 (6): 1543–50. Jun 2010. doi:10.1038/jid.2010.7. PMID 20130592. 
  24. "On the diagnostic utility of junction plakoglobin in arrhythmogenic right ventricular cardiomyopathy". Cardiovascular Pathology 22 (5): 309–11. 2013. doi:10.1016/j.carpath.2013.05.002. PMID 23806441. 
  25. "The ARVD/C genetic variants database: 2014 update". Human Mutation 36 (4): 403–10. Apr 2015. doi:10.1002/humu.22765. PMID 25676813. 
  26. "Desmosomal gene analysis in arrhythmogenic right ventricular dysplasia/cardiomyopathy: spectrum of mutations and clinical impact in practice". Europace 12 (6): 861–8. Jun 2010. doi:10.1093/europace/euq104. PMID 20400443. 
  27. McNally, E; MacLeod, H; Dellefave-Castillo, L; Pagon, R. A.; Adam, M. P.; Ardinger, H. H.; Wallace, S. E.; Amemiya, A et al. (1993). Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy. PMID 20301310. 
  28. "Multiple mutations in desmosomal proteins encoding genes in arrhythmogenic right ventricular cardiomyopathy/dysplasia". Heart Rhythm 7 (1): 22–9. Jan 2010. doi:10.1016/j.hrthm.2009.09.070. PMID 20129281. 
  29. "Comprehensive desmosome mutation analysis in north americans with arrhythmogenic right ventricular dysplasia/cardiomyopathy". Circulation: Cardiovascular Genetics 2 (5): 428–35. Oct 2009. doi:10.1161/CIRCGENETICS.109.858217. PMID 20031617. 
  30. "Mechanisms of disease: molecular genetics of arrhythmogenic right ventricular dysplasia/cardiomyopathy". Nature Clinical Practice Cardiovascular Medicine 5 (5): 258–67. May 2008. doi:10.1038/ncpcardio1182. PMID 18382419. 
  31. "Molecular genetics of arrhythmogenic right ventricular cardiomyopathy: emerging horizon?". Current Opinion in Cardiology 22 (3): 185–92. May 2007. doi:10.1097/HCO.0b013e3280d942c4. PMID 17413274. 
  32. "Role of genetic analysis in the management of patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy". Journal of the American College of Cardiology 50 (19): 1813–21. Nov 2007. doi:10.1016/j.jacc.2007.08.008. PMID 17980246. 
  33. "Suppression of canonical Wnt/beta-catenin signaling by nuclear plakoglobin recapitulates phenotype of arrhythmogenic right ventricular cardiomyopathy". The Journal of Clinical Investigation 116 (7): 2012–21. Jul 2006. doi:10.1172/JCI27751. PMID 16823493. 
  34. "Arrhythmogenic right ventricular cardiomyopathy is a disease of cardiac stem cells". Current Opinion in Cardiology 25 (3): 222–8. May 2010. doi:10.1097/HCO.0b013e3283376daf. PMID 20124997. 
  35. "Arrhythmogenic right ventricular cardiomyopathy caused by deletions in plakophilin-2 and plakoglobin (Naxos disease) in families from Greece and Cyprus: genotype-phenotype relations, diagnostic features and prognosis". European Heart Journal 27 (18): 2208–16. Sep 2006. doi:10.1093/eurheartj/ehl184. PMID 16893920. 
  36. "Cardiomyopathies: New test for arrhythmogenic right ventricular cardiomyopathy". Nature Reviews. Cardiology 6 (7): 450–1. Jul 2009. doi:10.1038/nrcardio.2009.97. PMID 19554004. 
  37. "A possible role of catenin dyslocalization in pemphigus vulgaris pathogenesis". Journal of Cutaneous Pathology 28 (9): 460–9. Oct 2001. doi:10.1034/j.1600-0560.2001.028009460.x. PMID 11553312. 
  38. "Catenin dislocation in oral pemphigus vulgaris". Journal of Oral Pathology & Medicine 30 (5): 268–74. May 2001. doi:10.1034/j.1600-0714.2001.300503.x. PMID 11334462. 
  39. 39.0 39.1 "Association of plakoglobin with APC, a tumor suppressor gene product, and its regulation by tyrosine phosphorylation". Biochemical and Biophysical Research Communications 203 (1): 519–22. Aug 1994. doi:10.1006/bbrc.1994.2213. PMID 8074697. 
  40. "The tyrosine kinase substrate p120cas binds directly to E-cadherin but not to the adenomatous polyposis coli protein or alpha-catenin". Molecular and Cellular Biology 15 (9): 4819–24. Sep 1995. doi:10.1128/mcb.15.9.4819. PMID 7651399. 
  41. 41.0 41.1 "Identification of plakoglobin domains required for association with N-cadherin and alpha-catenin". The Journal of Biological Chemistry 270 (34): 20201–6. Aug 1995. doi:10.1074/jbc.270.34.20201. PMID 7650039. 
  42. "A mutation in alpha-catenin disrupts adhesion in clone A cells without perturbing its actin and beta-catenin binding activity". Cell Adhesion and Communication 5 (4): 283–96. Jun 1998. doi:10.3109/15419069809040298. PMID 9762469. 
  43. "Identification of the domain of alpha-catenin involved in its association with beta-catenin and plakoglobin (gamma-catenin)". The Journal of Biological Chemistry 272 (17): 11017–20. Apr 1997. doi:10.1074/jbc.272.17.11017. PMID 9110993. 
  44. 44.0 44.1 "The epidermal growth factor receptor modulates the interaction of E-cadherin with the actin cytoskeleton". The Journal of Biological Chemistry 273 (15): 9078–84. Apr 1998. doi:10.1074/jbc.273.15.9078. PMID 9535896. 
  45. "Expression and interaction of different catenins in colorectal carcinoma cells". International Journal of Molecular Medicine 8 (6): 695–8. Dec 2001. doi:10.3892/ijmm.8.6.695. PMID 11712088. 
  46. "Tyrosine phosphorylation regulates the adhesions of ras-transformed breast epithelia". The Journal of Cell Biology 130 (2): 461–71. Jul 1995. doi:10.1083/jcb.130.2.461. PMID 7542250. 
  47. "Dynamics of cadherin/catenin complex formation: novel protein interactions and pathways of complex assembly". The Journal of Cell Biology 125 (6): 1327–40. Jun 1994. doi:10.1083/jcb.125.6.1327. PMID 8207061. 
  48. "Plakoglobin, or an 83-kD homologue distinct from beta-catenin, interacts with E-cadherin and N-cadherin". The Journal of Cell Biology 118 (3): 671–9. Aug 1992. doi:10.1083/jcb.118.3.671. PMID 1639850. 
  49. "A novel cell-cell junction system: the cortex adhaerens mosaic of lens fiber cells". Journal of Cell Science 116 (Pt 24): 4985–95. Dec 2003. doi:10.1242/jcs.00815. PMID 14625392. 
  50. "Amino-terminal domain of classic cadherins determines the specificity of the adhesive interactions". Journal of Cell Science 113 (16): 2829–36. Aug 2000. doi:10.1242/jcs.113.16.2829. PMID 10910767. 
  51. "Alteration of interendothelial adherens junctions following tumor cell-endothelial cell interaction in vitro". Experimental Cell Research 237 (2): 347–56. Dec 1997. doi:10.1006/excr.1997.3799. PMID 9434630. 
  52. "Histamine stimulates phosphorylation of adherens junction proteins and alters their link to vimentin". American Journal of Physiology. Lung Cellular and Molecular Physiology 282 (6): L1330–8. Jun 2002. doi:10.1152/ajplung.00329.2001. PMID 12003790. 
  53. "Isoform-specific differences in the size of desmosomal cadherin/catenin complexes". The Journal of Investigative Dermatology 117 (5): 1302–6. Nov 2001. doi:10.1046/j.1523-1747.2001.01512.x. PMID 11710948. 
  54. "The amino- and carboxyl-terminal tails of (beta)-catenin reduce its affinity for desmoglein 2". Journal of Cell Science 113 (10): 1737–45. May 2000. doi:10.1242/jcs.113.10.1737. PMID 10769205. 
  55. "The fourth armadillo repeat of plakoglobin (gamma-catenin) is required for its high affinity binding to the cytoplasmic domains of E-cadherin and desmosomal cadherin Dsg2, and the tumor suppressor APC protein". Journal of Biochemistry 118 (5): 1077–82. Nov 1995. doi:10.1093/jb/118.5.1077. PMID 8749329. 
  56. "VE-cadherin and desmoplakin are assembled into dermal microvascular endothelial intercellular junctions: a pivotal role for plakoglobin in the recruitment of desmoplakin to intercellular junctions". Journal of Cell Science 111 (20): 3045–57. Oct 1998. doi:10.1242/jcs.111.20.3045. PMID 9739078. 
  57. "The amino-terminal domain of desmoplakin binds to plakoglobin and clusters desmosomal cadherin-plakoglobin complexes". The Journal of Cell Biology 139 (3): 773–84. Nov 1997. doi:10.1083/jcb.139.3.773. PMID 9348293. 
  58. "Heregulin targets gamma-catenin to the nucleolus by a mechanism dependent on the DF3/MUC1 oncoprotein". Molecular Cancer Research 1 (10): 765–75. Aug 2003. PMID 12939402. 
  59. "Protein binding and functional characterization of plakophilin 2. Evidence for its diverse roles in desmosomes and beta -catenin signaling". The Journal of Biological Chemistry 277 (12): 10512–22. Mar 2002. doi:10.1074/jbc.M108765200. PMID 11790773. 
  60. "Association of human protein-tyrosine phosphatase kappa with members of the armadillo family". The Journal of Biological Chemistry 271 (28): 16712–9. Jul 1996. doi:10.1074/jbc.271.28.16712. PMID 8663237. 
  61. "Intracellular substrates of brain-enriched receptor protein tyrosine phosphatase rho (RPTPrho/PTPRT)". Brain Research 1116 (1): 50–7. Oct 2006. doi:10.1016/j.brainres.2006.07.122. PMID 16973135. 
  62. "Adult mice deficient in actinin-associated LIM-domain protein reveal a developmental pathway for right ventricular cardiomyopathy". Nature Medicine 7 (5): 591–7. May 2001. doi:10.1038/87920. PMID 11329061. 

Further reading

External links