Bitruncated 16-cell honeycomb

From HandWiki
Bitruncated 16-cell honeycomb
(No image)
Type Uniform honeycomb
Schläfli symbol t1,2{3,3,4,3}
h2,3{4,3,3,4}
2t{3,31,1,1}
Coxeter-Dynkin diagram CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes 10lu.png = CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png
CDel node.pngCDel 3.pngCDel node 1.pngCDel splitsplit1.pngCDel branch3 11.pngCDel node 1.png = CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
4-face type Truncated 24-cell Schlegel half-solid truncated 24-cell.png
Bitruncated tesseract Schlegel half-solid bitruncated 16-cell.png
Cell type Cube Hexahedron.png
Truncated octahedron 20px
Truncated tetrahedron Truncated tetrahedron.png
Face type {3}, {4}, {6}
Vertex figure
Coxeter group [math]\displaystyle{ {\tilde{F}}_4 }[/math] = [3,3,4,3]
[math]\displaystyle{ {\tilde{B}}_4 }[/math] = [4,3,31,1]
[math]\displaystyle{ {\tilde{D}}_4 }[/math] = [31,1,1,1]
Dual ?
Properties vertex-transitive

In four-dimensional Euclidean geometry, the bitruncated 16-cell honeycomb (or runcicantic tesseractic honeycomb) is a uniform space-filling tessellation (or honeycomb) in Euclidean 4-space.

Symmetry constructions

There are 3 different symmetry constructions, all with 3-3 duopyramid vertex figures. The [math]\displaystyle{ {\tilde{B}}_4 }[/math] symmetry doubles on [math]\displaystyle{ {\tilde{D}}_4 }[/math] in three possible ways, while [math]\displaystyle{ {\tilde{F}}_4 }[/math] contains the highest symmetry.

Affine Coxeter group [math]\displaystyle{ {\tilde{F}}_4 }[/math]
[3,3,4,3]
[math]\displaystyle{ {\tilde{B}}_4 }[/math]
[4,3,31,1]
[math]\displaystyle{ {\tilde{D}}_4 }[/math]
[31,1,1,1]
Coxeter diagram CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes 10lu.png CDel node.pngCDel 3.pngCDel node 1.pngCDel splitsplit1.pngCDel branch3 11.pngCDel node 1.png
4-faces CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes 10lu.png
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
CDel node 1.pngCDel splitsplit1.pngCDel branch3 11.pngCDel node 1.png
CDel node.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes 11.png

See also

Regular and uniform honeycombs in 4-space:

Notes

References

  • Kaleidoscopes: Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN:978-0-471-01003-6 [1]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • George Olshevsky, Uniform Panoploid Tetracombs, Manuscript (2006) (Complete list of 11 convex uniform tilings, 28 convex uniform honeycombs, and 143 convex uniform tetracombs)
  • Klitzing, Richard. "4D Euclidean tesselations". https://bendwavy.org/klitzing/dimensions/flat.htm.  x3x3x *b3x *b3o, x3x3o *b3x4o, o3x3x4o3o - bithit - O107
Fundamental convex regular and uniform honeycombs in dimensions 2-9
Space Family [math]\displaystyle{ {\tilde{A}}_{n-1} }[/math] [math]\displaystyle{ {\tilde{C}}_{n-1} }[/math] [math]\displaystyle{ {\tilde{B}}_{n-1} }[/math] [math]\displaystyle{ {\tilde{D}}_{n-1} }[/math] [math]\displaystyle{ {\tilde{G}}_2 }[/math] / [math]\displaystyle{ {\tilde{F}}_4 }[/math] / [math]\displaystyle{ {\tilde{E}}_{n-1} }[/math]
E2 Uniform tiling {3[3]} δ3 3 3 Hexagonal
E3 Uniform convex honeycomb {3[4]} δ4 4 4
E4 Uniform 4-honeycomb {3[5]} δ5 5 5 24-cell honeycomb
E5 Uniform 5-honeycomb {3[6]} δ6 6 6
E6 Uniform 6-honeycomb {3[7]} δ7 7 7 222
E7 Uniform 7-honeycomb {3[8]} δ8 8 8 133331
E8 Uniform 8-honeycomb {3[9]} δ9 9 9 152251521
E9 Uniform 9-honeycomb {3[10]} δ10 10 10
En-1 Uniform (n-1)-honeycomb {3[n]} δn n n 1k22k1k21