Earth:Riparian zone

From HandWiki
Short description: Interface between land and a river or stream
A riparian area is the transition from the aquatic area to the upland area. Vegetation is expected to change from species adapted to wetter sites near the channel to species adapted to drier sites in the upland, with a mixture of species occurring in between. In this example, an assessment of riparian function would consider the riparian areas, mixed riparian/upland areas, and aquatic area in the reach. Not all riparian areas have all of these features.[1]

A riparian zone or riparian area is the interface between land and a river or stream.[2] In some regions, the terms riparian woodland, riparian forest, riparian buffer zone, riparian corridor, and riparian strip are used to characterize a riparian zone. The word riparian is derived from Latin ripa, meaning "river bank".[3]

Riparian is also the proper nomenclature for one of the terrestrial biomes of the Earth.[4] Plant habitats and communities along the river margins and banks are called riparian vegetation, characterized by hydrophilic plants.[5] Riparian zones are important in ecology, environmental resource management, and civil engineering[6] because of their role in soil conservation, their habitat biodiversity, and the influence they have on terrestrial and semiaquatic fauna as well as aquatic ecosystems, including grasslands, woodlands, wetlands, and even non-vegetative areas.[7]

Riparian zones may be natural or engineered for soil stabilization or restoration.[8] These zones are important natural biofilters, protecting aquatic environments from excessive sedimentation, polluted surface runoff, and erosion.[9] They supply shelter and food for many aquatic animals and shade that limits stream temperature change.[10] When riparian zones are damaged by construction, agriculture or silviculture, biological restoration can take place, usually by human intervention in erosion control and revegetation.[11] If the area adjacent to a watercourse has standing water or saturated soil for as long as a season, it is normally termed a wetland because of its hydric soil characteristics. Because of their prominent role in supporting a diversity of species,[12] riparian zones are often the subject of national protection in a biodiversity action plan. These are also known as a "plant or vegetation waste buffer".[13]

Research shows that riparian zones are instrumental in water quality improvement for both surface runoff and water flowing into streams through subsurface or groundwater flow.[14][15] Riparian zones can play a role in lowering nitrate contamination in surface runoff, such as manure and other fertilizers from agricultural fields, that would otherwise damage ecosystems and human health.[16] Particularly, the attenuation of nitrate or denitrification of the nitrates from fertilizer in this buffer zone is important.[17] The use of wetland riparian zones shows a particularly high rate of removal of nitrate entering a stream and thus has a place in agricultural management.[18] Also in terms of carbon transport from terrestrial ecosystems to aquatic ecosystems, riparian groundwater can play an important role.[19] As such, a distinction can be made between parts of the riparian zone that connect large parts of the landscape to streams, and riparian areas with more local groundwater contributions.[20]

Characteristics

Key features of a typical riparian forest include

1. Location and Hydrological Context

   - Riparian forests are primarily situated alongside rivers or streams, with varying degrees of proximity to the water's edge.

   - These ecosystems are intimately connected with dynamic water flow and soil processes, influencing their characteristics.

2.Diverse Ecosystem Components

   - Riparian forests feature a diverse combination of elements, including:

   - Mesic terrestrial vegetation (vegetation adapted to moist conditions).

   - Dependent animal life, relying on the riparian environment for habitat and resources.

   - Local microclimate influenced by the presence of water bodies.

3. Distinct Vegetation Structure

   - The vegetation in riparian forests exhibits a multi-layered structure.

   - Moisture-dependent trees are the dominant feature, giving these forests a unique appearance, especially in savanna regions.

   - These moisture-dependent trees define the landscape, accompanied by a variety of mesic understorey, shrub, and ground cover species.

4. Floristic Composition

   - Riparian forests often host plant species that have high moisture requirements.

   - The flora typically includes species native to the region, adapted to the moist conditions provided by proximity to water bodies.

In summary, riparian forests are characterized by their location along waterways, their intricate interplay with water and soil dynamics, a diverse array of vegetation layers, and a plant composition favoring moisture-dependent species.

A well-preserved natural riparian strip on a tributary to Lake Erie

Roles and functions

Thick riparian vegetation along the Pisuerga River in Spain

Riparian zones dissipate stream energy.[21] The meandering curves of a river, combined with vegetation and root systems, slow the flow of water, which reduces soil erosion and flood damage.[22] Sediment is trapped, reducing suspended solids to create less turbid water, replenish soils, and build stream banks.[23] Pollutants are filtered from surface runoff, enhancing water quality via biofiltration.[3][24][25]

The riparian zones also provide wildlife habitat, increased biodiversity, and wildlife corridors,[26] enabling aquatic and riparian organisms to move along river systems avoiding isolated communities.[27] Riparian vegetation can also provide forage for wildlife and livestock.[23]

Riparian zones are also important for the fish that live within rivers, such as brook and charr.[28] Impacts on riparian zones can affect fish, and restoration is not always sufficient to recover fish populations.[29][30]

They provide native landscape irrigation by extending seasonal or perennial flows of water.[31] Nutrients from terrestrial vegetation (e.g. plant litter and insect drop) are transferred to aquatic food webs, and are a vital source of energy in aquatic food webs.[32] The vegetation surrounding the stream helps to shade the water, mitigating water temperature changes. Thinning of riparian zones has been observed to cause increased maximum temperatures, higher fluctuations in temperature, and elevated temperatures being observed more frequently and for longer periods of time.[33] Extreme changes in water temperature can have lethal effects on fish and other organisms in the area.[32] The vegetation also contributes wood debris to streams, which is important to maintaining geomorphology.[34]

Riparian zones also act as important buffers against nutrient loss in the wake of natural disasters, such as hurricanes.[35][36] Many of the characteristics of riparian zones that reduce the inputs of nitrogen from agricultural runoff also retain the necessary nitrogen in the ecosystem after hurricanes threaten to dilute and wash away critical nutrients.[37][38][39]

From a social aspect, riparian zones contribute to nearby property values through amenity and views, and they improve enjoyment for footpaths and bikeways through supporting foreshoreway networks. Space is created for riparian sports such as fishing, swimming, and launching for vessels and paddle craft.[40]

The riparian zone acts as a sacrificial erosion buffer to absorb impacts of factors including climate change, increased runoff from urbanization, and increased boat wake without damaging structures located behind a setback zone.[41][42]

"Riparian zones play a crucial role in preserving the vitality of streams and rivers, especially when faced with challenges stemming from catchment land use, including agricultural and urban development. These changes in land utilization can exert adverse impacts on the health of streams and rivers and, consequently, contribute to a decline in their reproductive rates."

Role in logging

The protection of riparian zones is often a consideration in logging operations.[43] The undisturbed soil, soil cover, and vegetation provide shade, plant litter, and woody material and reduce the delivery of soil eroded from the harvested area.[44] Factors such as soil types and root structures, climatic conditions, and vegetative cover determine the effectiveness of riparian buffering. Activities associated with logging, such as sediment input, introduction or removal of species, and the input of polluted water all degrade riparian zones.[45]

Vegetation

Riparian zone along Trout Creek in the Trout Creek Mountains, part of the Burns Bureau of Land Management District in southeastern Oregon. The creek provides critical habitat for trout.

The assortment of riparian zone trees varies from those of wetlands and typically consists of plants that are either emergent aquatic plants, or herbs, trees and shrubs that thrive in proximity to water.[46] In South Africa's fynbos biome, Riparian ecosystem are heavily invaded by alien woody plants.[47] Riparian plant communities along lowland streams exhibit remarkable species diversity, driven by the unique environmental gradients inherent to these ecosystems.[48]

Riparian zones in Africa

Riparian forest can be found in Benin, West Africa. In Benin, where the savanna ecosystem prevails, "riparian forests" include various types of woodlands, such as semi-deciduous forests, dry forests, open forests, and woodland savannas. These woodlands can be found alongside rivers and streams.[49] In Nigeria, you can also discover riparian zones within the Ibadan region of Oyo state. Ibadan, one of the oldest towns in Africa, covers a total area of 3,080 square kilometers and is characterized by a network of perennial water streams that create these valuable riparian zones.[49] In the research conducted by Adeoye et al. (2012) on land use changes in Southwestern Nigeria, it was observed that 46.18 square kilometers of the area are occupied by water bodies. Additionally, most streams and rivers in this region are accompanied by riparian forests. Nevertheless, the study also identified a consistent reduction in the extent of these riparian forests over time, primarily attributed to a significant deforestation rate.[50] In Nigeria, according to Momodu et al. (2011), there has been a notable decline of about 50% in the riparian forest coverage within the period of 1978 to 2000. This reduction is primarily attributed to alterations in land use and land cover. Additionally, their research indicates that if current trends continue, the riparian forests may face further depletion, potentially leading to their complete disappearance by the year 2040.[50] Riparian zones can also be found in Cape Agulhas region of South Africa.[51] Riparian areas along South African rivers have experienced significant deterioration as a result of human activities. Similar to many other developed and developing areas worldwide, the extensive building of dams in upstream river areas and the extraction of water for irrigation purposes have led to diminished water flows and changes in the riparian environment.[8]

North America

Water's edge

Herbaceous Perennial:


Inundated riparian zone

Herbaceous Perennial:[52][unreliable source?]


Western

In western North America and the Pacific coast, the riparian vegetation includes:

Riparian trees[53]


Riparian shrubs[53]


Other plants


Asia

In Asia there are different types of riparian vegetation,[54] but the interactions between hydrology and ecology are similar as occurs in other geographic areas.[55]


Australia

A riparian zone in Western Sydney

Typical riparian vegetation in temperate New South Wales, Australia include:


Central Europe

Typical riparian zone trees in Central Europe include:


Repair and restoration

Land clearing followed by floods can quickly erode a riverbank, taking valuable grasses and soils downstream, and later allowing the sun to bake the land dry.[56][57] Riparian zones can be restored through relocation (of human-made products), rehabilitation, and time.[45] Natural Sequence Farming techniques have been used in the Upper Hunter Valley of New South Wales, Australia, in an attempt to rapidly restore eroded farms to optimum productivity.[58]

The Natural Sequence Farming technique involves placing obstacles in the water's pathway to lessen the energy of a flood, and help the water to deposit soil and seep into the flood zone.[59] Another technique is to quickly establish ecological succession by encouraging fast-growing plants such as "weeds" (pioneer species) to grow.[60] These may spread along the watercourse and cause environmental degradation, but may stabilize the soil, place carbon into the ground, and protect the land from drying. The weeds will improve the streambeds so that trees and grasses can return, and later ideally replace the weeds.[61][62] There are several other techniques used by government and non-government agencies to address riparian and streambed degradation, ranging from the installation of bed control structures such as log sills to the use of pin groynes or rock emplacement.[63] Other possible approaches include control of invasive species, monitoring of herbivore activity, and cessation of human activity in a particular zone followed by natural re-vegetation.[64] Conservation efforts have also encouraged incorporating the value of ecosystem services provided by riparian zones into management plans, as these benefits have traditionally been absent in the consideration and designing of these plans.[64][65]

See also

References

  1. Dickard, M., M. Gonzalez, W. Elmore, S. Leonard, D. Smith, S. Smith, J. Staats, P. Summers, D. Weixelman, S. Wyman (2015). "Riparian area management: Proper functioning condition assessment for lotic areas". Technical Reference 1737-15. U.S. Department of the Interior, Bureau of Land Management, Denver, CO.
  2. "Riparian Areas Environmental Uniqueness, Functions, and Values". https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/technical/?cid=nrcs143_014199#what. 
  3. 3.0 3.1 (in en) Read "Riparian Areas: Functions and Strategies for Management" at NAP.edu. https://www.nap.edu/read/10327/chapter/4. 
  4. "Riparian Zone: Definition and Characteristics" (in en-US). 2018-05-17. https://biologydictionary.net/riparian-zone/. 
  5. (in en) Read "Riparian Areas: Functions and Strategies for Management" at NAP.edu. https://www.nap.edu/read/10327/chapter/3. 
  6. Burdon, Francis J.; Ramberg, Ellinor; Sargac, Jasmina; Forio, Marie Anne Eurie; de Saeyer, Nancy; Mutinova, Petra Thea; Moe, Therese Fosholt; Pavelescu, Mihaela Oprina et al. (April 2020). "Assessing the Benefits of Forested Riparian Zones: A Qualitative Index of Riparian Integrity Is Positively Associated with Ecological Status in European Streams" (in en). Water 12 (4): 1178. doi:10.3390/w12041178. ISSN 2073-4441. 
  7. "IUFRO: 8.01.05 - Riparian and coastal ecosystems / 8.01.00 - Forest ecosystem functions / 8.00.00 - Forest Environment". https://www.iufro.org/science/divisions/division-8/80000/80100/80105/. 
  8. 8.0 8.1 "Riparian Ecosystem - an overview | ScienceDirect Topics". https://www.sciencedirect.com/topics/earth-and-planetary-sciences/riparian-ecosystem. 
  9. Gregory, Stanley V.; Swanson, Frederick J.; McKee, W. Arthur; Cummins, Kenneth W. (1991). "An Ecosystem Perspective of Riparian Zones". BioScience 41 (8): 540–551. doi:10.2307/1311607. ISSN 0006-3568. https://www.jstor.org/stable/1311607. 
  10. "Riparian zone - NatureSpots App - Let's explore Nature together" (in en-GB). https://www.naturespots.net/habitats/freshwater/12769-riparian-zone. 
  11. "Riparian Zone - an overview | ScienceDirect Topics". https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/riparian-zone. 
  12. "The Ecology of Interfaces—Riparian Zones". http://www.nativefishlab.net/library/textpdf/19487.pdf. 
  13. "Riparian zone - NatureSpots App - Let's explore Nature together" (in en-GB). https://www.naturespots.net/habitats/freshwater/12769-riparian-zone. 
  14. Dosskey, Michael G.; Vidon, Philippe; Gurwick, Noel P.; Allan, Craig J.; Duval, Tim P.; Lowrance, Richard (April 2010). "The Role of Riparian Vegetation in Protecting and Improving Chemical Water Quality in Streams 1: T he R ole of R iparian V egetation in P rotecting and I mproving C hemical W ater Q uality in S treams" (in en). JAWRA Journal of the American Water Resources Association 46 (2): 261–277. doi:10.1111/j.1752-1688.2010.00419.x. https://onlinelibrary.wiley.com/doi/10.1111/j.1752-1688.2010.00419.x. 
  15. Tomer, Mark D.; Dosskey, Michael G.; Burkart, Michael R.; James, David E.; Helmers, Matthew J.; Eisenhauer, Dean E. (2005). "Placement of riparian forest buffers to improve water quality" (in en). In: Brooks, K.N. And Ffolliot, P.F. (Eds) Moving Agroforestry into the Mainstream. Proc. 9th N. Am. Agroforest. Conf. Rochester, MN. 12–15 June 2005. https://www.fs.usda.gov/research/treesearch/21369. 
  16. Pedraza, Sara; Clerici, Nicola; Zuluaga Gaviria, Jennifer D.; Sanchez, Adriana (January 2021). "Global Research on Riparian Zones in the XXI Century: A Bibliometric Analysis" (in en). Water 13 (13): 1836. doi:10.3390/w13131836. ISSN 2073-4441. 
  17. Chukwuka, Azubuike Victor; Ogbeide, Ozekeke (2021-04-21), "Riparian-Buffer Loss and Pesticide Incidence in Freshwater Matrices of Ikpoba River (Nigeria): Policy Recommendations for the Protection of Tropical River Basins" (in en), River Basin Management - Sustainability Issues and Planning Strategies (IntechOpen), ISBN 978-1-83968-131-8, https://www.intechopen.com/chapters/75214, retrieved 2023-05-21 
  18. Lowrance, Richard; Todd, Robert; Fail, Joseph; Hendrickson, Ole; Leonard, Ralph; Asmussen, Loris (1984). "Riparian Forests as Nutrient Filters in Agricultural Watersheds". BioScience 34 (6): 374–377. doi:10.2307/1309729. ISSN 0006-3568. https://www.jstor.org/stable/1309729. 
  19. Ledesma, José L. J.; Grabs, Thomas; Bishop, Kevin H.; Schiff, Sherry L.; Köhler, Stephan J. (August 2015). "Potential for long-term transfer of dissolved organic carbon from riparian zones to streams in boreal catchments". Global Change Biology 21 (8): 2963–2979. doi:10.1111/gcb.12872. PMID 25611952. Bibcode2015GCBio..21.2963L. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-259485. 
  20. Leach, J. A.; Lidberg, W.; Kuglerová, L.; Peralta-Tapia, A.; Ågren, A.; Laudon, H. (July 2017). "Evaluating topography-based predictions of shallow lateral groundwater discharge zones for a boreal lake-stream system". Water Resources Research 53 (7): 5420–5437. doi:10.1002/2016WR019804. Bibcode2017WRR....53.5420L. 
  21. "The Importance of Streamside Plants & Trees | Shore Stewards | Washington State University" (in en-US). https://shorestewards.cw.wsu.edu/faq/the-importance-of-streamside-plants-trees/. 
  22. Christos (2017-01-23). "What are Riparian Areas and Why are They Important?" (in en-US). https://tucanada.org/2017/01/23/what-are-riparian-areas-and-why-are-they-important/. 
  23. 23.0 23.1 "Riparian Mitigation – Mitico" (in en-US). https://miticomo.com/mitigation/riparian-mitigation/. 
  24. "The Riparian Zone" (in en). 2016-08-18. https://slco.org/watershed/streams-101/the-riparian-zone/. 
  25. Swanson, S.; Kozlowski, D.; Hall, R.; Heggem, D.; Lin, J. (2017-03-01). "Riparian proper functioning condition assessment to improve watershed management for water quality" (in en). Journal of Soil and Water Conservation 72 (2): 168–182. doi:10.2489/jswc.72.2.168. ISSN 0022-4561. PMID 30245529. PMC 6145829. https://www.jswconline.org/content/72/2/168. 
  26. "Riparian Habitat | Wildlife Heritage Foundation". https://www.wildlifeheritage.org/riparian-habitats-life-blood-for-the-overall-ecosystem/. 
  27. Kjartanson, Meghan. "Riparian zones" (in en-GB). https://forestryandland.gov.scot/blog/riparian-zones. 
  28. (in en) Read "Riparian Areas: Functions and Strategies for Management" at NAP.edu. https://www.nap.edu/read/10327/chapter/2. 
  29. Sievers, Michael; Hale, Robin; Morrongiello, John R. (March 2017). "Do trout respond to riparian change? A meta-analysis with implications for restoration and management". Freshwater Biology 62 (3): 445–457. doi:10.1111/fwb.12888. 
  30. Sabo, John L.; Sponseller, Ryan; Dixon, Mark; Gade, Kris; Harms, Tamara; Heffernan, Jim; Jani, Andrea; Katz, Gabrielle et al. (2005). "Riparian Zones Increase Regional Species Richness by Harboring Different, Not More, Species". Ecology 86 (1): 56–62. doi:10.1890/04-0668. ISSN 0012-9658. https://www.jstor.org/stable/3450987. 
  31. "Chapter 8 : Riparian Zone | Friends of Reservoirs". https://www.friendsofreservoirs.com/science/best-management-practices-manual/chapter-8-riparian-zone/. 
  32. 32.0 32.1 Pusey, Bradley J.; Arthington, Angela H. (2003). "Importance of the riparian zone to the conservation and management of freshwater fish: a review" (in en). Marine and Freshwater Research 54 (1): 1–16. doi:10.1071/mf02041. ISSN 1448-6059. https://www.publish.csiro.au/mf/mf02041. 
  33. Roon, David A.; Dunham, Jason B.; Groom, Jeremiah D. (2021-02-16). "Shade, light, and stream temperature responses to riparian thinning in second-growth redwood forests of northern California" (in en). PLOS ONE 16 (2): e0246822. doi:10.1371/journal.pone.0246822. ISSN 1932-6203. PMID 33592001. Bibcode2021PLoSO..1646822R. 
  34. Vidon, Philippe G. F.; Hill, Alan R. (2004-06-15). "Landscape controls on the hydrology of stream riparian zones" (in en). Journal of Hydrology 292 (1): 210–228. doi:10.1016/j.jhydrol.2004.01.005. ISSN 0022-1694. Bibcode2004JHyd..292..210V. https://www.sciencedirect.com/science/article/pii/S0022169404000150. 
  35. "Establishment and restoration of riparian buffers — English" (in en). https://climate-adapt.eea.europa.eu/en/metadata/adaptation-options/establishment-and-restoration-of-riparian-buffer-s. 
  36. "Riparian Buffers for Field Crops, Hay, and Pastures" (in en). https://extension.psu.edu/riparian-buffers-for-field-crops-hay-and-pastures. 
  37. McDowell, William H. (2001-12-01). "Hurricanes, people, and riparian zones: controls on nutrient losses from forested Caribbean watersheds" (in en). Forest Ecology and Management. New Directions in Tropical Forest Research 154 (3): 443–451. doi:10.1016/S0378-1127(01)00514-X. ISSN 0378-1127. https://www.sciencedirect.com/science/article/pii/S037811270100514X. 
  38. "Riparian Buffers - an overview | ScienceDirect Topics". https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/riparian-buffers. 
  39. Wu, Shaoteng; Bashir, Muhammad Amjad; Raza, Qurat-Ul-Ain; Rehim, Abdur; Geng, Yucong; Cao, Lei (2023). "Application of riparian buffer zone in agricultural non-point source pollution control—A review". Frontiers in Sustainable Food Systems 7. doi:10.3389/fsufs.2023.985870. ISSN 2571-581X. 
  40. "Importance of Riparian Buffers" (in en). https://dep.wv.gov/WWE/getinvolved/sos/Pages/RiparianMagic.aspx. 
  41. Ma, Maohua (2016), Finlayson, C. Max; Everard, Mark; Irvine, Kenneth et al., eds., "Riparian Buffer Zone for Wetlands" (in en), The Wetland Book: I: Structure and Function, Management and Methods (Dordrecht: Springer Netherlands): pp. 1–9, doi:10.1007/978-94-007-6172-8_53-7, ISBN 978-94-007-6172-8, https://doi.org/10.1007/978-94-007-6172-8_53-7, retrieved 2023-05-22 
  42. "Riparian vegetation | environmentdata.org". http://www.environmentdata.org/archive/vocabpref:21475. 
  43. "Forest Management in Riparian Areas". https://extension.unh.edu/goodforestry/html/4-3.htm. 
  44. Singh, Rinku; Tiwari, A. K.; Singh, G. S. (2021-04-01). "Managing riparian zones for river health improvement: an integrated approach" (in en). Landscape and Ecological Engineering 17 (2): 195–223. doi:10.1007/s11355-020-00436-5. ISSN 1860-188X. https://doi.org/10.1007/s11355-020-00436-5. 
  45. 45.0 45.1 Bren, L. J. (1993-10-01). "Riparian zone, stream, and floodplain issues: a review" (in en). Journal of Hydrology 150 (2): 277–299. doi:10.1016/0022-1694(93)90113-N. ISSN 0022-1694. Bibcode1993JHyd..150..277B. https://dx.doi.org/10.1016/0022-1694%2893%2990113-N. 
  46. "Beavers Ecosystem in Toronto" (in en). https://prezi.com/cpep0dh6rcxg/beavers-ecoysystem-in-toronto/. 
  47. Ruwanza, S.; Gaertner, M.; Esler, K. J.; Richardson, D. M. (2013-09-01). "The effectiveness of active and passive restoration on recovery of indigenous vegetation in riparian zones in the Western Cape, South Africa: A preliminary assessment". South African Journal of Botany 88: 132–141. doi:10.1016/j.sajb.2013.06.022. ISSN 0254-6299. https://www.sciencedirect.com/science/article/pii/S0254629913003074. 
  48. Garssen, Annemarie G.; Verhoeven, Jos T. A.; Soons, Merel B. (May 2014). "Effects of climate‐induced increases in summer drought on riparian plant species: a meta‐analysis" (in en). Freshwater Biology 59 (5): 1052–1063. doi:10.1111/fwb.12328. ISSN 0046-5070. PMID 26180267. PMC 4493900. https://onlinelibrary.wiley.com/doi/10.1111/fwb.12328. 
  49. 49.0 49.1 "Home | Food and Agriculture Organization of the United Nations" (in en). http://www.fao.org/home/en. 
  50. 50.0 50.1 Borisade, Tolulope Victor; Odiwe, Anthony Ifechukwude; Akinwumiju, Akinola Shola; Uwalaka, Nelson Obinna; Orimoogunje, Oluwagbenga Isaac (2021-09-01). "Assessing the impacts of land use on riparian vegetation dynamics in Osun State, Nigeria". Trees, Forests and People 5: 100099. doi:10.1016/j.tfp.2021.100099. ISSN 2666-7193. https://www.sciencedirect.com/science/article/pii/S2666719321000388. 
  51. "ScienceDirect.com | Science, health and medical journals, full text articles and books.". https://www.sciencedirect.com/. 
  52. "List of trees and plants" (xls). http://charmeck.org/mecklenburg/county/SolidWaste/MasterComposters/NativePlants/Documents/treeslist.xls. 
  53. 53.0 53.1 Cooke, Sarah Spear (1997). A Field Guide to the Common Wetland Plants of Western Washington and Northwestern Oregon. Seattle, Washington: Seattle Audubon Society. ISBN 978-0-914516-11-8. 
  54. Zhao, Qinghe; Ding, Shengyan; Liu, Qian; Wang, Shuoqian; Jing, Yaru; Lu, Mengwen (2020-08-13). "Vegetation influences soil properties along riparian zones of the Beijiang River in Southern China" (in en). PeerJ 8: e9699. doi:10.7717/peerj.9699. ISSN 2167-8359. https://peerj.com/articles/9699. 
  55. "Riparian Vegetation Along the Middle and Lower Zones of the Chalakkudy River, Kerala, India". Kerala Research Programme Centre for Development Studies. http://krpcds.org/report/amita.pdf. 
  56. "Types of erosion" (in en). https://www.qld.gov.au/environment/land/management/soil/erosion/types. 
  57. Dumbrovsky, Miroslav; Korsun, Svatopluk (2012-11-21), "Optimization of Soil Erosion and Flood Control Systems in the Process of Land Consolidation" (in en), Research on Soil Erosion (IntechOpen), ISBN 978-953-51-0839-9, https://www.intechopen.com/chapters/37815, retrieved 2023-05-22 
  58. Fryirs, Kirstie; Brierley, Gary J. (April 2010). "Antecedent controls on river character and behaviour in partly confined valley settings: Upper Hunter catchment, NSW, Australia". Geomorphology 117 (1–2): 106–120. doi:10.1016/j.geomorph.2009.11.015. ISSN 0169-555X. Bibcode2010Geomo.117..106F. http://dx.doi.org/10.1016/j.geomorph.2009.11.015. 
  59. "Riverbank Restoration | Helping farmers in Scotland | Farm Advisory Service" (in en-GB). https://www.fas.scot/environment/water-management/water-margins-2/riverbank-restoration/. 
  60. "Secondary Succession" (in en). https://www.vedantu.com/geography/secondary-succession. 
  61. Connell, Joseph H.; Slatyer, Ralph O. (1977). "Mechanisms of Succession in Natural Communities and Their Role in Community Stability and Organization". The American Naturalist 111 (982): 1119–1144. doi:10.1086/283241. ISSN 0003-0147. https://www.jstor.org/stable/2460259. 
  62. "Ecological Succession". http://yennieapes.weebly.com/ecological-succession.html. 
  63. "Ecological Weed Control" (in en-US). https://www.ecofarmingdaily.com/ecological-weed-control/. 
  64. 64.0 64.1 González, Eduardo; Felipe-Lucia, María R.; Bourgeois, Bérenger; Boz, Bruno; Nilsson, Christer; Palmer, Grant; Sher, Anna A. (2017-07-01). "Integrative conservation of riparian zones" (in en). Biological Conservation. Small Natural Features 211: 20–29. doi:10.1016/j.biocon.2016.10.035. ISSN 0006-3207. https://www.sciencedirect.com/science/article/pii/S0006320716306887. 
  65. "Permaculture Design Principle 8 – Accelerating Succession and Evolution" (in en-US). 2012-06-18. https://deepgreenpermaculture.com/permaculture/permaculture-design-principles/8-accelerating-succession-and-evolution/. 

Further reading

External links