Infrabarrelled space
In functional analysis, a discipline within mathematics, a locally convex topological vector space (TVS) is said to be infrabarrelled (also spelled infrabarreled) if every bounded barrel is a neighborhood of the origin.[1]
Similarly, quasibarrelled spaces are topological vector spaces (TVS) for which every bornivorous barrelled set in the space is a neighbourhood of the origin. Quasibarrelled spaces are studied because they are a weakening of the defining condition of barrelled spaces, for which a form of the Banach–Steinhaus theorem holds.
Definition
A subset [math]\displaystyle{ B }[/math] of a topological vector space (TVS) [math]\displaystyle{ X }[/math] is called bornivorous if it absorbs all bounded subsets of [math]\displaystyle{ X }[/math]; that is, if for each bounded subset [math]\displaystyle{ S }[/math] of [math]\displaystyle{ X, }[/math] there exists some scalar [math]\displaystyle{ r }[/math] such that [math]\displaystyle{ S \subseteq r B. }[/math] A barrelled set or a barrel in a TVS is a set which is convex, balanced, absorbing and closed. A quasibarrelled space is a TVS for which every bornivorous barrelled set in the space is a neighbourhood of the origin.[2][3]
Characterizations
If [math]\displaystyle{ X }[/math] is a Hausdorff locally convex space then the canonical injection from [math]\displaystyle{ X }[/math] into its bidual is a topological embedding if and only if [math]\displaystyle{ X }[/math] is infrabarrelled.[4]
A Hausdorff topological vector space [math]\displaystyle{ X }[/math] is quasibarrelled if and only if every bounded closed linear operator from [math]\displaystyle{ X }[/math] into a complete metrizable TVS is continuous.[5] By definition, a linear [math]\displaystyle{ F : X \to Y }[/math] operator is called closed if its graph is a closed subset of [math]\displaystyle{ X \times Y. }[/math]
For a locally convex space [math]\displaystyle{ X }[/math] with continuous dual [math]\displaystyle{ X^{\prime} }[/math] the following are equivalent:
- [math]\displaystyle{ X }[/math] is quasibarrelled.
- Every bounded lower semi-continuous semi-norm on [math]\displaystyle{ X }[/math] is continuous.
- Every [math]\displaystyle{ \beta(X', X) }[/math]-bounded subset of the continuous dual space [math]\displaystyle{ X^{\prime} }[/math] is equicontinuous.
If [math]\displaystyle{ X }[/math] is a metrizable locally convex TVS then the following are equivalent:
- The strong dual of [math]\displaystyle{ X }[/math] is quasibarrelled.
- The strong dual of [math]\displaystyle{ X }[/math] is barrelled.
- The strong dual of [math]\displaystyle{ X }[/math] is bornological.
Properties
Every quasi-complete infrabarrelled space is barrelled.[1]
A locally convex Hausdorff quasibarrelled space that is sequentially complete is barrelled.[6]
A locally convex Hausdorff quasibarrelled space is a Mackey space, quasi-M-barrelled, and countably quasibarrelled.[7]
A locally convex quasibarrelled space that is also a σ-barrelled space is necessarily a barrelled space.[3]
A locally convex space is reflexive if and only if it is semireflexive and quasibarrelled.[3]
Examples
Every barrelled space is infrabarrelled.[1] A closed vector subspace of an infrabarrelled space is, however, not necessarily infrabarrelled.[8]
Every product and locally convex direct sum of any family of infrabarrelled spaces is infrabarrelled.[8] Every separated quotient of an infrabarrelled space is infrabarrelled.[8]
Every Hausdorff barrelled space and every Hausdorff bornological space is quasibarrelled.[9] Thus, every metrizable TVS is quasibarrelled.
Note that there exist quasibarrelled spaces that are neither barrelled nor bornological.[3] There exist Mackey spaces that are not quasibarrelled.[3] There exist distinguished spaces, DF-spaces, and [math]\displaystyle{ \sigma }[/math]-barrelled spaces that are not quasibarrelled.[3]
The strong dual space [math]\displaystyle{ X_b^{\prime} }[/math] of a Fréchet space [math]\displaystyle{ X }[/math] is distinguished if and only if [math]\displaystyle{ X }[/math] is quasibarrelled.[10]
Counter-examples
There exists a DF-space that is not quasibarrelled.[3]
There exists a quasibarrelled DF-space that is not bornological.[3]
There exists a quasibarrelled space that is not a σ-barrelled space.[3]
See also
- Barrelled space – Type of topological vector space
- Reflexive space
- Semi-reflexive space
References
- ↑ 1.0 1.1 1.2 Schaefer & Wolff 1999, p. 142.
- ↑ Jarchow 1981, p. 222.
- ↑ 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 Khaleelulla 1982, pp. 28-63.
- ↑ Narici & Beckenstein 2011, pp. 488–491.
- ↑ Adasch, Ernst & Keim 1978, p. 43.
- ↑ Khaleelulla 1982, p. 28.
- ↑ Khaleelulla 1982, pp. 35.
- ↑ 8.0 8.1 8.2 Schaefer & Wolff 1999, p. 194.
- ↑ Adasch, Ernst & Keim 1978, pp. 70-73.
- ↑ Gabriyelyan, S.S. "On topological spaces and topological groups with certain local countable networks (2014)
Bibliography
- Adasch, Norbert; Ernst, Bruno; Keim, Dieter (1978). Topological Vector Spaces: The Theory Without Convexity Conditions. Lecture Notes in Mathematics. {3834. Berlin New York: Springer-Verlag. ISBN 978-3-540-08662-8. OCLC 297140003.
- Jarchow, Hans (1981). Locally convex spaces. Stuttgart: B.G. Teubner. ISBN 978-3-519-02224-4. OCLC 8210342.
- Bourbaki, Nicolas (1987). Topological Vector Spaces: Chapters 1–5. Éléments de mathématique. 2. Berlin New York: Springer-Verlag. ISBN 978-3-540-42338-6. OCLC 17499190. http://www.numdam.org/item?id=AIF_1950__2__5_0.
- Conway, John B. (1990). A Course in Functional Analysis. Graduate Texts in Mathematics. 96 (2nd ed.). New York: Springer-Verlag. ISBN 978-0-387-97245-9. OCLC 21195908.
- Edwards, Robert E. (Jan 1, 1995). Functional Analysis: Theory and Applications. New York: Dover Publications. ISBN 978-0-486-68143-6. OCLC 30593138.
- Grothendieck, Alexander (January 1, 1973). Topological Vector Spaces. New York: Gordon and Breach Science Publishers. ISBN 978-0-677-30020-7. OCLC 886098. https://archive.org/details/topologicalvecto0000grot.
- Template:Hogbe-Nlend Bornologies and Functional Analysis
- Husain, Taqdir; Khaleelulla, S. M. (1978). Barrelledness in Topological and Ordered Vector Spaces. Lecture Notes in Mathematics. 692. Berlin, New York, Heidelberg: Springer-Verlag. ISBN 978-3-540-09096-0. OCLC 4493665.
- Jarchow, Hans (1981). Locally convex spaces. Stuttgart: B.G. Teubner. ISBN 978-3-519-02224-4. OCLC 8210342.
- Khaleelulla, S. M. (July 1, 1982). written at Berlin Heidelberg. Counterexamples in Topological Vector Spaces. Lecture Notes in Mathematics. 936. Berlin New York: Springer-Verlag. ISBN 978-3-540-11565-6. OCLC 8588370.
- Köthe, Gottfried (1969). Topological Vector Spaces I. Grundlehren der mathematischen Wissenschaften. 159. New York: Springer Science & Business Media. ISBN 978-3-642-64988-2. OCLC 840293704.
- Köthe, Gottfried (1979). Topological Vector Spaces II. Grundlehren der mathematischen Wissenschaften. 237. New York: Springer Science & Business Media. ISBN 978-0-387-90400-9. OCLC 180577972.
- Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
- Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.
- Swartz, Charles (1992). An introduction to Functional Analysis. New York: M. Dekker. ISBN 978-0-8247-8643-4. OCLC 24909067.
- Trèves, François (August 6, 2006). Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322.
- Wilansky, Albert (2013). Modern Methods in Topological Vector Spaces. Mineola, New York: Dover Publications, Inc. ISBN 978-0-486-49353-4. OCLC 849801114.
- Template:Wong Schwartz Spaces, Nuclear Spaces, and Tensor Products
Original source: https://en.wikipedia.org/wiki/Infrabarrelled space.
Read more |