Sequentially complete

From HandWiki

In mathematics, specifically in topology and functional analysis, a subspace S of a uniform space X is said to be sequentially complete or semi-complete if every Cauchy sequence in S converges to an element in S. X is called sequentially complete if it is a sequentially complete subset of itself.

Sequentially complete topological vector spaces

Every topological vector space is a uniform space so the notion of sequential completeness can be applied to them.

Properties of sequentially complete topological vector spaces

  1. A bounded sequentially complete disk in a Hausdorff topological vector space is a Banach disk.[1]
  2. A Hausdorff locally convex space that is sequentially complete and bornological is ultrabornological.[2]

Examples and sufficient conditions

  1. Every complete space is sequentially complete but not conversely.
  2. A metrizable space then it is complete if and only if it is sequentially complete.
  3. Every complete topological vector space is quasi-complete and every quasi-complete topological vector space is sequentially complete.[3]

See also

References

Bibliography