Lehmer matrix
In mathematics, particularly matrix theory, the n×n Lehmer matrix (named after Derrick Henry Lehmer) is the constant symmetric matrix defined by
- [math]\displaystyle{ A_{ij} = \begin{cases} i/j, & j\ge i \\ j/i, & j\lt i. \end{cases} }[/math]
Alternatively, this may be written as
- [math]\displaystyle{ A_{ij} = \frac{\mbox{min}(i,j)}{\mbox{max}(i,j)}. }[/math]
Properties
As can be seen in the examples section, if A is an n×n Lehmer matrix and B is an m×m Lehmer matrix, then A is a submatrix of B whenever m>n. The values of elements diminish toward zero away from the diagonal, where all elements have value 1.
The inverse of a Lehmer matrix is a tridiagonal matrix, where the superdiagonal and subdiagonal have strictly negative entries. Consider again the n×n A and m×m B Lehmer matrices, where m>n. A rather peculiar property of their inverses is that A−1 is nearly a submatrix of B−1, except for the A−1n,n element, which is not equal to B−1n,n.
A Lehmer matrix of order n has trace n.
Examples
The 2×2, 3×3 and 4×4 Lehmer matrices and their inverses are shown below.
- [math]\displaystyle{ \begin{array}{lllll} A_2=\begin{pmatrix} 1 & 1/2 \\ 1/2 & 1 \end{pmatrix}; & A_2^{-1}=\begin{pmatrix} 4/3 & -2/3 \\ -2/3 & {\color{Brown}{\mathbf{4/3}}} \end{pmatrix}; \\ \\ A_3=\begin{pmatrix} 1 & 1/2 & 1/3 \\ 1/2 & 1 & 2/3 \\ 1/3 & 2/3 & 1 \end{pmatrix}; & A_3^{-1}=\begin{pmatrix} 4/3 & -2/3 & \\ -2/3 & 32/15 & -6/5 \\ & -6/5 & {\color{Brown}{\mathbf{9/5}}} \end{pmatrix}; \\ \\ A_4=\begin{pmatrix} 1 & 1/2 & 1/3 & 1/4 \\ 1/2 & 1 & 2/3 & 1/2 \\ 1/3 & 2/3 & 1 & 3/4 \\ 1/4 & 1/2 & 3/4 & 1 \end{pmatrix}; & A_4^{-1}=\begin{pmatrix} 4/3 & -2/3 & & \\ -2/3 & 32/15 & -6/5 & \\ & -6/5 & 108/35 & -12/7 \\ & & -12/7 & {\color{Brown}{\mathbf{16/7}}} \end{pmatrix}. \\ \end{array} }[/math]
See also
References
- M. Newman and J. Todd, The evaluation of matrix inversion programs, Journal of the Society for Industrial and Applied Mathematics, Volume 6, 1958, pages 466-476.
Original source: https://en.wikipedia.org/wiki/Lehmer matrix.
Read more |