Shift matrix
In mathematics, a shift matrix is a binary matrix with ones only on the superdiagonal or subdiagonal, and zeroes elsewhere. A shift matrix U with ones on the superdiagonal is an upper shift matrix. The alternative subdiagonal matrix L is unsurprisingly known as a lower shift matrix. The (i, j )th component of U and L are
- [math]\displaystyle{ U_{ij} = \delta_{i+1,j}, \quad L_{ij} = \delta_{i,j+1}, }[/math]
where [math]\displaystyle{ \delta_{ij} }[/math] is the Kronecker delta symbol.
For example, the 5 × 5 shift matrices are
- [math]\displaystyle{ U_5 = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \quad L_5 = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}. }[/math]
Clearly, the transpose of a lower shift matrix is an upper shift matrix and vice versa.
As a linear transformation, a lower shift matrix shifts the components of a column vector one position down, with a zero appearing in the first position. An upper shift matrix shifts the components of a column vector one position up, with a zero appearing in the last position.[1]
Premultiplying a matrix A by a lower shift matrix results in the elements of A being shifted downward by one position, with zeroes appearing in the top row. Postmultiplication by a lower shift matrix results in a shift left. Similar operations involving an upper shift matrix result in the opposite shift.
Clearly all finite-dimensional shift matrices are nilpotent; an n × n shift matrix S becomes the zero matrix when raised to the power of its dimension n.
Shift matrices act on shift spaces. The infinite-dimensional shift matrices are particularly important for the study of ergodic systems. Important examples of infinite-dimensional shifts are the Bernoulli shift, which acts as a shift on Cantor space, and the Gauss map, which acts as a shift on the space of continued fractions (that is, on Baire space.)
Properties
Let L and U be the n × n lower and upper shift matrices, respectively. The following properties hold for both U and L. Let us therefore only list the properties for U:
- det(U) = 0
- tr(U) = 0
- rank(U) = n − 1
- The characteristic polynomials of U is
- [math]\displaystyle{ p_U(\lambda) = (-1)^n\lambda^n. }[/math]
- U n = 0. This follows from the previous property by the Cayley–Hamilton theorem.
- The permanent of U is 0.
The following properties show how U and L are related:
- LT = U; UT = L
- The null spaces of U and L are
- [math]\displaystyle{ N(U) = \operatorname{span}\left\{ (1, 0, \ldots, 0)^\mathsf{T} \right\}, }[/math]
- [math]\displaystyle{ N(L) = \operatorname{span}\left\{ (0, \ldots, 0, 1)^\mathsf{T} \right\}. }[/math]
- The spectrum of U and L is [math]\displaystyle{ \{0\} }[/math]. The algebraic multiplicity of 0 is n, and its geometric multiplicity is 1. From the expressions for the null spaces, it follows that (up to a scaling) the only eigenvector for U is [math]\displaystyle{ (1, 0, \ldots, 0)^\mathsf{T} }[/math], and the only eigenvector for L is [math]\displaystyle{ (0, \ldots, 0, 1)^\mathsf{T} }[/math].
- For LU and UL we have
- [math]\displaystyle{ UL = I - \operatorname{diag}(0, \ldots, 0, 1), }[/math]
- [math]\displaystyle{ LU = I - \operatorname{diag}(1, 0, \ldots, 0). }[/math]
These matrices are both idempotent, symmetric, and have the same rank as U and L - Ln−aUn−a + LaUa = Un−aLn−a + UaLa = I (the identity matrix), for any integer a between 0 and n inclusive.
If N is any nilpotent matrix, then N is similar to a block diagonal matrix of the form
- [math]\displaystyle{ \begin{pmatrix} S_1 & 0 & \ldots & 0 \\ 0 & S_2 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & S_r \end{pmatrix} }[/math]
where each of the blocks S1, S2, ..., Sr is a shift matrix (possibly of different sizes).[2][3]
Examples
- [math]\displaystyle{ S = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}; \quad A = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 & 1 \\ 1 & 2 & 3 & 2 & 1 \\ 1 & 2 & 2 & 2 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}. }[/math]
Then,
- [math]\displaystyle{ SA = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 & 1 \\ 1 & 2 & 3 & 2 & 1 \\ 1 & 2 & 2 & 2 & 1 \end{pmatrix}; \quad AS = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 2 & 2 & 2 & 1 & 0 \\ 2 & 3 & 2 & 1 & 0 \\ 2 & 2 & 2 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \end{pmatrix}. }[/math]
Clearly there are many possible permutations. For example, [math]\displaystyle{ S^\mathsf{T} A S }[/math] is equal to the matrix A shifted up and left along the main diagonal.
- [math]\displaystyle{ S^\mathsf{T}AS=\begin{pmatrix} 2 & 2 & 2 & 1 & 0 \\ 2 & 3 & 2 & 1 & 0 \\ 2 & 2 & 2 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}. }[/math]
See also
- Clock and shift matrices
- Nilpotent matrix
- Subshift of finite type
Notes
References
- Beauregard, Raymond A.; Fraleigh, John B. (1973), A First Course In Linear Algebra: with Optional Introduction to Groups, Rings, and Fields, Boston: Houghton Mifflin Co., ISBN 0-395-14017-X, https://archive.org/details/firstcourseinlin0000beau
- Herstein, I. N. (1964), Topics In Algebra, Waltham: Blaisdell Publishing Company, ISBN 978-1114541016
External links
Original source: https://en.wikipedia.org/wiki/Shift matrix.
Read more |