Nilpotent matrix
In linear algebra, a nilpotent matrix is a square matrix N such that
- [math]\displaystyle{ N^k = 0\, }[/math]
for some positive integer [math]\displaystyle{ k }[/math]. The smallest such [math]\displaystyle{ k }[/math] is called the index of [math]\displaystyle{ N }[/math],[1] sometimes the degree of [math]\displaystyle{ N }[/math].
More generally, a nilpotent transformation is a linear transformation [math]\displaystyle{ L }[/math] of a vector space such that [math]\displaystyle{ L^k = 0 }[/math] for some positive integer [math]\displaystyle{ k }[/math] (and thus, [math]\displaystyle{ L^j = 0 }[/math] for all [math]\displaystyle{ j \geq k }[/math]).[2][3][4] Both of these concepts are special cases of a more general concept of nilpotence that applies to elements of rings.
Examples
Example 1
The matrix
- [math]\displaystyle{ A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} }[/math]
is nilpotent with index 2, since [math]\displaystyle{ A^2 = 0 }[/math].
Example 2
More generally, any [math]\displaystyle{ n }[/math]-dimensional triangular matrix with zeros along the main diagonal is nilpotent, with index [math]\displaystyle{ \le n }[/math][citation needed]. For example, the matrix
- [math]\displaystyle{ B=\begin{bmatrix} 0 & 2 & 1 & 6\\ 0 & 0 & 1 & 2\\ 0 & 0 & 0 & 3\\ 0 & 0 & 0 & 0 \end{bmatrix} }[/math]
is nilpotent, with
- [math]\displaystyle{ B^2=\begin{bmatrix} 0 & 0 & 2 & 7\\ 0 & 0 & 0 & 3\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{bmatrix} ;\ B^3=\begin{bmatrix} 0 & 0 & 0 & 6\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{bmatrix} ;\ B^4=\begin{bmatrix} 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{bmatrix}. }[/math]
The index of [math]\displaystyle{ B }[/math] is therefore 4.
Example 3
Although the examples above have a large number of zero entries, a typical nilpotent matrix does not. For example,
- [math]\displaystyle{ C=\begin{bmatrix} 5 & -3 & 2 \\ 15 & -9 & 6 \\ 10 & -6 & 4 \end{bmatrix} \qquad C^2=\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} }[/math]
although the matrix has no zero entries.
Example 4
Additionally, any matrices of the form
- [math]\displaystyle{ \begin{bmatrix} a_1 & a_1 & \cdots & a_1 \\ a_2 & a_2 & \cdots & a_2 \\ \vdots & \vdots & \ddots & \vdots \\ -a_1-a_2-\ldots-a_{n-1} & -a_1-a_2-\ldots-a_{n-1} & \ldots & -a_1-a_2-\ldots-a_{n-1} \end{bmatrix} }[/math]
such as
- [math]\displaystyle{ \begin{bmatrix} 5 & 5 & 5 \\ 6 & 6 & 6 \\ -11 & -11 & -11 \end{bmatrix} }[/math]
or
- [math]\displaystyle{ \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ 4 & 4 & 4 & 4 \\ -7 & -7 & -7 & -7 \end{bmatrix} }[/math]
square to zero.
Example 5
Perhaps some of the most striking examples of nilpotent matrices are [math]\displaystyle{ n\times n }[/math] square matrices of the form:
- [math]\displaystyle{ \begin{bmatrix} 2 & 2 & 2 & \cdots & 1-n \\ n+2 & 1 & 1 & \cdots & -n \\ 1 & n+2 & 1 & \cdots & -n \\ 1 & 1 & n+2 & \cdots & -n \\ \vdots & \vdots & \vdots & \ddots & \vdots \end{bmatrix} }[/math]
The first few of which are:
- [math]\displaystyle{ \begin{bmatrix} 2 & -1 \\ 4 & -2 \end{bmatrix} \qquad \begin{bmatrix} 2 & 2 & -2 \\ 5 & 1 & -3 \\ 1 & 5 & -3 \end{bmatrix} \qquad \begin{bmatrix} 2 & 2 & 2 & -3 \\ 6 & 1 & 1 & -4 \\ 1 & 6 & 1 & -4 \\ 1 & 1 & 6 & -4 \end{bmatrix} \qquad \begin{bmatrix} 2 & 2 & 2 & 2 & -4 \\ 7 & 1 & 1 & 1 & -5 \\ 1 & 7 & 1 & 1 & -5 \\ 1 & 1 & 7 & 1 & -5 \\ 1 & 1 & 1 & 7 & -5 \end{bmatrix} \qquad \ldots }[/math]
These matrices are nilpotent but there are no zero entries in any powers of them less than the index.[5]
Example 6
Consider the linear space of polynomials of a bounded degree. The derivative operator is a linear map. We know that applying the derivative to a polynomial decreases its degree by one, so when applying it iteratively, we will eventually obtain zero. Therefore, on such a space, the derivative is representable by a nilpotent matrix.
Characterization
For an [math]\displaystyle{ n \times n }[/math] square matrix [math]\displaystyle{ N }[/math] with real (or complex) entries, the following are equivalent:
- [math]\displaystyle{ N }[/math] is nilpotent.
- The characteristic polynomial for [math]\displaystyle{ N }[/math] is [math]\displaystyle{ \det \left(xI - N\right) = x^n }[/math].
- The minimal polynomial for [math]\displaystyle{ N }[/math] is [math]\displaystyle{ x^k }[/math] for some positive integer [math]\displaystyle{ k \leq n }[/math].
- The only complex eigenvalue for [math]\displaystyle{ N }[/math] is 0.
The last theorem holds true for matrices over any field of characteristic 0 or sufficiently large characteristic. (cf. Newton's identities)
This theorem has several consequences, including:
- The index of an [math]\displaystyle{ n \times n }[/math] nilpotent matrix is always less than or equal to [math]\displaystyle{ n }[/math]. For example, every [math]\displaystyle{ 2 \times 2 }[/math] nilpotent matrix squares to zero.
- The determinant and trace of a nilpotent matrix are always zero. Consequently, a nilpotent matrix cannot be invertible.
- The only nilpotent diagonalizable matrix is the zero matrix.
See also: Jordan–Chevalley decomposition.
Classification
Consider the [math]\displaystyle{ n \times n }[/math] (upper) shift matrix:
- [math]\displaystyle{ S = \begin{bmatrix} 0 & 1 & 0 & \ldots & 0 \\ 0 & 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & 1 \\ 0 & 0 & 0 & \ldots & 0 \end{bmatrix}. }[/math]
This matrix has 1s along the superdiagonal and 0s everywhere else. As a linear transformation, the shift matrix "shifts" the components of a vector one position to the left, with a zero appearing in the last position:
- [math]\displaystyle{ S(x_1,x_2,\ldots,x_n) = (x_2,\ldots,x_n,0). }[/math][6]
This matrix is nilpotent with degree [math]\displaystyle{ n }[/math], and is the canonical nilpotent matrix.
Specifically, if [math]\displaystyle{ N }[/math] is any nilpotent matrix, then [math]\displaystyle{ N }[/math] is similar to a block diagonal matrix of the form
- [math]\displaystyle{ \begin{bmatrix} S_1 & 0 & \ldots & 0 \\ 0 & S_2 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & S_r \end{bmatrix} }[/math]
where each of the blocks [math]\displaystyle{ S_1,S_2,\ldots,S_r }[/math] is a shift matrix (possibly of different sizes). This form is a special case of the Jordan canonical form for matrices.[7]
For example, any nonzero 2 × 2 nilpotent matrix is similar to the matrix
- [math]\displaystyle{ \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}. }[/math]
That is, if [math]\displaystyle{ N }[/math] is any nonzero 2 × 2 nilpotent matrix, then there exists a basis b1, b2 such that Nb1 = 0 and Nb2 = b1.
This classification theorem holds for matrices over any field. (It is not necessary for the field to be algebraically closed.)
Flag of subspaces
A nilpotent transformation [math]\displaystyle{ L }[/math] on [math]\displaystyle{ \mathbb{R}^n }[/math] naturally determines a flag of subspaces
- [math]\displaystyle{ \{0\} \subset \ker L \subset \ker L^2 \subset \ldots \subset \ker L^{q-1} \subset \ker L^q = \mathbb{R}^n }[/math]
and a signature
- [math]\displaystyle{ 0 = n_0 \lt n_1 \lt n_2 \lt \ldots \lt n_{q-1} \lt n_q = n,\qquad n_i = \dim \ker L^i. }[/math]
The signature characterizes [math]\displaystyle{ L }[/math] up to an invertible linear transformation. Furthermore, it satisfies the inequalities
- [math]\displaystyle{ n_{j+1} - n_j \leq n_j - n_{j-1}, \qquad \mbox{for all } j = 1,\ldots,q-1. }[/math]
Conversely, any sequence of natural numbers satisfying these inequalities is the signature of a nilpotent transformation.
Additional properties
- If [math]\displaystyle{ N }[/math] is nilpotent of index [math]\displaystyle{ k }[/math] , then [math]\displaystyle{ I+N }[/math] and [math]\displaystyle{ I-N }[/math] are invertible, where [math]\displaystyle{ I }[/math] is the [math]\displaystyle{ n \times n }[/math] identity matrix. The inverses are given by
- [math]\displaystyle{ \begin{align} (I + N)^{-1} &= \displaystyle\sum^k_{m=0}\left(-N\right)^m = I - N + N^2 - N^3 + N^4 - N^5 + N^6 - N^7 + \cdots +(-N)^k \\ (I - N)^{-1} &= \displaystyle\sum^k_{m=0}N^m = I + N + N^2 + N^3 + N^4 + N^5 + N^6 + N^7 + \cdots + N^k \\ \end{align} }[/math]
- If [math]\displaystyle{ N }[/math] is nilpotent, then
- [math]\displaystyle{ \det (I + N) = 1. }[/math]
Conversely, if [math]\displaystyle{ A }[/math] is a matrix and
- [math]\displaystyle{ \det (I + tA) = 1\!\, }[/math]
- Every singular matrix can be written as a product of nilpotent matrices.[8]
- A nilpotent matrix is a special case of a convergent matrix.
Generalizations
A linear operator [math]\displaystyle{ T }[/math] is locally nilpotent if for every vector [math]\displaystyle{ v }[/math], there exists a [math]\displaystyle{ k\in\mathbb{N} }[/math] such that
- [math]\displaystyle{ T^k(v) = 0.\!\, }[/math]
For operators on a finite-dimensional vector space, local nilpotence is equivalent to nilpotence.
Notes
- ↑ (Herstein 1975)
- ↑ (Beauregard Fraleigh)
- ↑ (Herstein 1975)
- ↑ (Nering 1970)
- ↑ Mercer, Idris D. (31 October 2005). "Finding "nonobvious" nilpotent matrices". self-published; personal credentials: PhD Mathematics, Simon Fraser University. http://www.idmercer.com/nilpotent.pdf.
- ↑ (Beauregard Fraleigh)
- ↑ (Beauregard Fraleigh)
- ↑ R. Sullivan, Products of nilpotent matrices, Linear and Multilinear Algebra, Vol. 56, No. 3
References
- Beauregard, Raymond A.; Fraleigh, John B. (1973), A First Course In Linear Algebra: with Optional Introduction to Groups, Rings, and Fields, Boston: Houghton Mifflin Co., ISBN 0-395-14017-X, https://archive.org/details/firstcourseinlin0000beau
- Herstein, I. N. (1975), Topics In Algebra (2nd ed.), John Wiley & Sons
- Nering, Evar D. (1970), Linear Algebra and Matrix Theory (2nd ed.), New York: John Wiley & Sons
External links
Original source: https://en.wikipedia.org/wiki/Nilpotent matrix.
Read more |