Medicine:Molecular pathological epidemiology

From HandWiki
Short description: Discipline combining epidemiology and pathology

Molecular pathological epidemiology (MPE, also molecular pathologic epidemiology) is a discipline combining epidemiology and pathology. It is defined as "epidemiology of molecular pathology and heterogeneity of disease".[1] Pathology and epidemiology share the same goal of elucidating etiology of disease, and MPE aims to achieve this goal at molecular, individual and population levels. Typically, MPE utilizes tissue pathology resources and data within existing epidemiology studies. Molecular epidemiology broadly encompasses MPE and conventional-type molecular epidemiology with the use of traditional disease designation systems.

Disease process

Data from The Cancer Genome Atlas projects indicate that disease evolution is an inherently heterogeneous process.[2][3] Each patient has a unique disease process (“the unique disease principle”), considering the uniqueness of the exposome and its unique influence on molecular pathologic process.[2] This concept has been adopted in clinical medicine along with precision medicine and personalized medicine.[citation needed]

Methodology

In MPE, investigators dissect interrelationships between exposures (e.g., environmental, dietary, lifestyle and genetic factors); alterations in cellular or extracellular molecules (disease molecular signatures); and disease evolution and progression.[2] Investigators can analyze genome, methylome, epigenome, metabolome, transcriptome, proteome, microbiome, immunity and interactome. A putative risk factor can be linked to specific molecular signatures.[citation needed]

MPE research enables identification of a new biomarker for potential clinical utility, using large-scale population-based data (e.g., PIK3CA mutation in colorectal cancer to select patients for aspirin therapy).[1] The MPE approach can be used following a genome-wide association study (GWAS), termed "GWAS-MPE approach".[4] Detailed disease endpoint phenotyping can be conducted by means of molecular pathology or surrogate histopathology or immunohistochemistry analysis of diseased tissues and cells within GWAS.[5][6]

As an alternative approach, potential risk variants identified by GWAS can be examined in combination with molecular pathology analysis on diseased tissues.[7][8][9][10] This GWAS-MPE approach can give not only more precise effect estimates, even larger effects, for specific molecular subtypes of the disease, but also insights into pathogenesis by linking genetic variants to molecular pathologic signatures of disease.[4] Since molecular diagnostics is becoming routine clinical practice, molecular pathology data can aid epidemiologic research.[citation needed]

History

MPE began as analysis of risk factors (e.g., smoking) and molecular pathological findings (e.g., KRAS G12C oncogene mutations in lung carcinoma).[citation needed]

Studies to examine the relationship between an exposure and molecular pathological signatures of disease (particularly, cancer) became increasingly common throughout the 1990s and early 2000s.[11]

The use of molecular pathology in epidemiology lacked standardized methodologies and guidelines as well as interdisciplinary experts and training programs.[12] MPE research required a new conceptual framework and methodologies (epidemiological method) because MPE examines heterogeneity in an outcome variable.[13]

The term "molecular pathological epidemiology" was used by Shuji Ogino and Meir Stampfer in 2010.[14] Specific principles of MPE developed following 2010. The MPE paradigm is in widespread use globally,[15][16][17][18][19][20][21][22][23][24][25][excessive citations] and has been a subject of international conferences.[26][27][28] The International Molecular Pathological Epidemiology (MPE) Meeting Series, which was established in 2013, has been open to the research community around the world, and five meetings were held through 2021.[29][30][31][32]

See also

References

  1. 1.0 1.1 "Discovery of colorectal cancer PIK3CA mutation as potential predictive biomarker: power and promise of molecular pathological epidemiology". Oncogene 33 (23): 2949–55. June 2014. doi:10.1038/onc.2013.244. PMID 23792451. 
  2. 2.0 2.1 2.2 "Molecular pathological epidemiology of epigenetics: emerging integrative science to analyze environment, host, and disease". Modern Pathology 26 (4): 465–84. April 2013. doi:10.1038/modpathol.2012.214. PMID 23307060. 
  3. "How many molecular subtypes? Implications of the unique tumor principle in personalized medicine". Expert Review of Molecular Diagnostics 12 (6): 621–8. 2012. doi:10.1586/erm.12.46. PMID 22845482. 
  4. 4.0 4.1 "Molecular pathological epidemiology of colorectal neoplasia: an emerging transdisciplinary and interdisciplinary field". Gut 60 (3): 397–411. March 2011. doi:10.1136/gut.2010.217182. PMID 21036793. 
  5. "Epigenetic analysis leads to identification of HNF1B as a subtype-specific susceptibility gene for ovarian cancer". Nature Communications 4: 1628. 2013. doi:10.1038/ncomms2629. PMID 23535649. Bibcode2013NatCo...4.1628.. 
  6. "Genome-wide association studies identify four ER negative-specific breast cancer risk loci". Nature Genetics 45 (4): 392–8, 398e1-2. April 2013. doi:10.1038/ng.2561. PMID 23535733. 
  7. "Genetic variation in 8q24 associated with risk of colorectal cancer". Cancer Biology & Therapy 6 (7): 1143–7. July 2007. doi:10.4161/cbt.6.7.4704. PMID 17630503. 
  8. "Increased risk of colon cancer associated with a genetic polymorphism of SMAD7". Cancer Research 70 (4): 1479–85. February 2010. doi:10.1158/0008-5472.CAN-08-1792. PMID 20124488. 
  9. "Phenotypic and tumor molecular characterization of colorectal cancer in relation to a susceptibility SMAD7 variant associated with survival". Carcinogenesis 34 (2): 292–8. February 2013. doi:10.1093/carcin/bgs335. PMID 23104301. 
  10. "Aspirin use, 8q24 single nucleotide polymorphism rs6983267, and colorectal cancer according to CTNNB1 alterations". Journal of the National Cancer Institute 105 (24): 1852–61. December 2013. doi:10.1093/jnci/djt331. PMID 24317174. 
  11. "The science and art of molecular epidemiology". Journal of Epidemiology and Community Health 56 (10): 728–9. October 2002. doi:10.1136/jech.56.10.728. PMID 12239192. 
  12. "Molecular pathology in epidemiologic studies: a primer on key considerations". Cancer Epidemiology, Biomarkers & Prevention 19 (4): 966–72. April 2010. doi:10.1158/1055-9965.EPI-10-0056. PMID 20332257. 
  13. "Ogino et Al. Respond to "the 21st century epidemiologist"". American Journal of Epidemiology 176 (8): 672–4. 2012. doi:10.1093/aje/kws229. PMID 22935516. 
  14. "Lifestyle factors and microsatellite instability in colorectal cancer: the evolving field of molecular pathological epidemiology". Journal of the National Cancer Institute 102 (6): 365–7. March 2010. doi:10.1093/jnci/djq031. PMID 20208016. 
  15. "CpG island methylation in colorectal cancer: past, present and future". Pathology Research International 2011: 902674. April 2011. doi:10.4061/2011/902674. PMID 21559209. 
  16. "Cancer classification using the Immunoscore: a worldwide task force". Journal of Translational Medicine 10: 205. October 2012. doi:10.1186/1479-5876-10-205. PMID 23034130. 
  17. "Gene discovery in familial cancer syndromes by exome sequencing: prospects for the elucidation of familial colorectal cancer type X". Modern Pathology 25 (8): 1055–68. August 2012. doi:10.1038/modpathol.2012.62. PMID 22522846. 
  18. "Can tissue-based immune markers be used for studying the natural history of cancer?". Annals of Epidemiology 22 (7): 520–30. July 2012. doi:10.1016/j.annepidem.2012.03.001. PMID 22481034. 
  19. "Molecular epidemiology of EGFR and KRAS mutations in 3,026 lung adenocarcinomas: higher susceptibility of women to smoking-related KRAS-mutant cancers". Clinical Cancer Research 18 (22): 6169–77. November 2012. doi:10.1158/1078-0432.CCR-11-3265. PMID 23014527. 
  20. "Integrative cancer epidemiology--the next generation". Cancer Discovery 2 (12): 1087–90. December 2012. doi:10.1158/2159-8290.CD-12-0424. PMID 23230187. 
  21. "Conventional and nanotechniques for DNA methylation profiling". The Journal of Molecular Diagnostics 15 (1): 17–26. January 2013. doi:10.1016/j.jmoldx.2012.06.007. PMID 23127612. 
  22. "The CpG island methylator phenotype: what's in a name?". Cancer Research 73 (19): 5858–68. October 2013. doi:10.1158/0008-5472.CAN-12-4306. PMID 23801749. 
  23. "Diagnostic biomarkers are hidden in the infected host's epigenome". Expert Review of Molecular Diagnostics 13 (6): 625–37. July 2013. doi:10.1586/14737159.2013.811897. PMID 23895131. 
  24. "Cellular metabolism in colorectal carcinogenesis: Influence of lifestyle, gut microbiome and metabolic pathways". Cancer Letters 356 (2 Pt A): 273–80. January 2015. doi:10.1016/j.canlet.2014.02.026. PMID 24614287. 
  25. "Epidemiological transition of colorectal cancer in developing countries: environmental factors, molecular pathways, and opportunities for prevention". World Journal of Gastroenterology 20 (20): 6055–72. May 2014. doi:10.3748/wjg.v20.i20.6055. PMID 24876728. 
  26. "The role of epidemiology in the era of molecular epidemiology and genomics: Summary of the 2013 AJE-sponsored Society of Epidemiologic Research Symposium". American Journal of Epidemiology 178 (9): 1350–4. November 2013. doi:10.1093/aje/kwt239. PMID 24105654. 
  27. "Challenges and opportunities in international molecular cancer prevention research: An ASPO Molecular Epidemiology and the Environment and International Cancer Prevention Interest Groups Report". Cancer Epidemiology, Biomarkers & Prevention 23 (11): 2613–7. 2014. doi:10.1158/1055-9965.EPI-14-0848. PMID 25277796. 
  28. "Proceedings of the second international molecular pathological epidemiology (MPE) meeting". Cancer Causes & Control 26 (7): 959–72. 2015. doi:10.1007/s10552-015-0596-2. PMID 25956270. 
  29. "The Ogino MPE lab". Dana-Farber Cancer Institute. http://ogino-mpe-lab.dana-farber.org. 
  30. "Proceedings of the third international molecular pathological epidemiology (MPE) meeting". Cancer Causes & Control 28 (2): 167–176. 2017. doi:10.1007/s10552-016-0845-z. PMID 28097472. 
  31. Campbell et al. Cancer Causes Cont 2019
  32. "Home". http://www.mpemeeting.org/. 

Further reading