Physics:Fermi–Walker transport

From HandWiki
Short description: Mathematical technique in general relativity

Fermi–Walker transport is a process in general relativity used to define a coordinate system or reference frame such that all curvature in the frame is due to the presence of mass/energy density and not to arbitrary spin or rotation of the frame. It was discovered by Fermi in 1921 and rediscovered by Walker in 1932.[1]

Fermi–Walker differentiation

In the theory of Lorentzian manifolds, Fermi–Walker differentiation is a generalization of covariant differentiation. In general relativity, Fermi–Walker derivatives of the spacelike vector fields in a frame field, taken with respect to the timelike unit vector field in the frame field, are used to define non-inertial and non-rotating frames, by stipulating that the Fermi–Walker derivatives should vanish. In the special case of inertial frames, the Fermi–Walker derivatives reduce to covariant derivatives.

With a [math]\displaystyle{ (-+++) }[/math] sign convention, this is defined for a vector field X along a curve [math]\displaystyle{ \gamma(s) }[/math]:

[math]\displaystyle{ \frac{D_F X}{d s}=\frac{DX}{d s} - \left(X,\frac{DV}{d s}\right) V + (X,V)\frac{DV}{d s}, }[/math]

where V is four-velocity, D is the covariant derivative, and [math]\displaystyle{ ( \cdot , \cdot ) }[/math] is the scalar product. If

[math]\displaystyle{ \frac{D_F X}{d s}=0, }[/math]

then the vector field X is Fermi–Walker transported along the curve.[2] Vectors perpendicular to the space of four-velocities in Minkowski spacetime, e.g., polarization vectors, under Fermi–Walker transport experience Thomas precession.

Using the Fermi derivative, the Bargmann–Michel–Telegdi equation[3] for spin precession of electron in an external electromagnetic field can be written as follows:

[math]\displaystyle{ \frac{D_Fa^{\tau}}{ds} = 2\mu (F^{\tau \lambda} - u^{\tau} u_{\sigma} F^{\sigma \lambda})a_{\lambda}, }[/math]

where [math]\displaystyle{ a^{\tau} }[/math] and [math]\displaystyle{ \mu }[/math] are polarization four-vector and magnetic moment, [math]\displaystyle{ u^{\tau} }[/math] is four-velocity of electron, [math]\displaystyle{ a^{\tau}a_{\tau} = -u^{\tau}u_{\tau} = -1 }[/math], [math]\displaystyle{ u^{\tau} a_{\tau}=0 }[/math], and [math]\displaystyle{ F^{\tau \sigma} }[/math] is the electromagnetic field strength tensor. The right side describes Larmor precession.

Co-moving coordinate systems

A coordinate system co-moving with a particle can be defined. If we take the unit vector [math]\displaystyle{ v^{\mu} }[/math] as defining an axis in the co-moving coordinate system, then any system transforming with proper time is said to be undergoing Fermi–Walker transport.[4]

Generalised Fermi–Walker differentiation

Fermi–Walker differentiation can be extended for any [math]\displaystyle{ V }[/math] where [math]\displaystyle{ (V,V)\ne0 }[/math] (that is, not a light-like vector). This is defined for a vector field [math]\displaystyle{ X }[/math] along a curve [math]\displaystyle{ \gamma(s) }[/math]:

[math]\displaystyle{ \frac{\mathcal D X}{d s}=\frac{D X}{d s} + \left(X,\frac{DV}{d s}\right)\frac{V}{(V,V)} - \frac{(X,V)}{(V,V)}\frac{DV}{d s} - \left(V,\frac{DV}{d s}\right)\frac{(X,V)}{(V,V)^2} V , }[/math][5]

Except for the last term, which is new, and basically caused by the possibility that [math]\displaystyle{ (V, V) }[/math] is not constant, it can be derived by taking the previous equation, and dividing each [math]\displaystyle{ V^2 }[/math] by [math]\displaystyle{ (V,V) }[/math].

If [math]\displaystyle{ (V,V)=-1 }[/math], then we recover the Fermi–Walker differentiation:

[math]\displaystyle{ \left(V,\frac{DV}{d s}\right)=\frac{1}{2}\frac{d}{ds}(V,V)=0\ , }[/math] and [math]\displaystyle{ \frac{\mathcal{D} X}{d s}=\frac{D_F X}{d s} . }[/math]

See also

Notes

  1. Bini, Donato; Jantzen, Robert T. (2002). "Circular Holonomy, Clock Effects and Gravitoelectromagnetism: Still Going Around in Circles After All These Years". Nuovo Cimento B 117 (9–11): 983–1008. https://www.sif.it/riviste/sif/ncb/econtents/2002/117/09-11/article/21. 
  2. Hawking & Ellis 1973, p. 80
  3. Bargmann, Michel & Telegdi 1959
  4. Misner, Thorne & Wheeler 1973, p. 170
  5. Kocharyan, A. A. (2004). "Geometry of Dynamical Systems". arXiv:astro-ph/0411595.

References

  • Bargmann, V.; Michel, L.; Telegdi, V. L. (1959). "Precession of the Polarization of Particles Moving in a Homogeneous Electromagnetic Field". Physical Review Letters 2 (10): 435. doi:10.1103/PhysRevLett.2.435. Bibcode1959PhRvL...2..435B. .
  • Landau, L.D.; Lifshitz, E.M. (2002). The Classical Theory of Fields. Course of Theoretical Physics. 2 (4th ed.). Butterworth–Heinemann. ISBN 0-7506-2768-9. 
  • Misner, Charles W.; Thorne, Kip S.; Wheeler, John A. (1973). Gravitation. W. H. Freeman. ISBN 0-7167-0344-0. 
  • Hawking, Stephen W.; Ellis, George F.R. (1973). The Large Scale Structure of Space-time. Cambridge University Press. ISBN 0-521-09906-4. 
  • Kocharyan, A. A. (2004). "Geometry of Dynamical Systems". arXiv:astro-ph/0411595.