Physics:Timeline of fundamental physics discoveries

From HandWiki
Short description: None

Template:TopicTOC-Physics This timeline lists significant discoveries in physics and the laws of nature, including experimental discoveries, theoretical proposals that were confirmed experimentally, and theories that have significantly influenced current thinking in modern physics. Such discoveries are often a multi-step, multi-person process. Multiple discovery sometimes occurs when multiple research groups discover the same phenomenon at about the same time, and scientific priority is often disputed. The listings below include some of the most significant people and ideas by date of publication or experiment.

Antiquity

Middle Ages

16th century

17th century

18th century

19th century

20th century

21st century

See also

References

  1. Rovelli, Carlo (2023). Anaximander and the Nature of Science. Allen Lane. ISBN 978-0-241-63504-9. 
  2. Rovelli, Carlo (2015). "Aristotle's Physics: A Physicist's Look.". Journal of the American Philosophical Association 1: 23–40. doi:10.1017/apa.2014.11. 
  3. Russell, Bertrand — History of Western Philosophy (2004) – p. 215
  4. "The Heliocentric System in Greek, Persian and Hindu Astronomy", Annals of the New York Academy of Sciences 500 (1): 528, 1987, doi:10.1111/j.1749-6632.1987.tb37224.x, Bibcode1987NYASA.500..525V 
  5. Marchant, Jo (2022-10-18). "First known map of night sky found hidden in Medieval parchment" (in en). Nature 610 (7933): 613–614. doi:10.1038/d41586-022-03296-1. PMID 36258126. Bibcode2022Natur.610..613M. 
  6. "Hero's Shortest Path". Harvard University. https://sciencedemonstrations.fas.harvard.edu/presentations/heros-shortest-path. ""Hero's Principle states that light undergoing a reflection from a plane surface will follow the path of least distance"" 
  7. Pines, Shlomo (1986), Studies in Arabic versions of Greek texts and in mediaeval science, 2, Brill Publishers, p. 203, ISBN 965-223-626-8 
  8. American Heritage Dictionary (January 2005). The American Heritage Science Dictionary. Houghton Mifflin Harcourt. p. 428. ISBN 978-0-618-45504-1. https://books.google.com/books?id=yKUagx8PB_EC&pg=PA428. 
  9. John L. Heilbron (14 February 2003). The Oxford Companion to the History of Modern Science. Oxford University Press. p. 235. ISBN 978-0-19-974376-6. https://books.google.com/books?id=abqjP-_KfzkC&pg=PA235. 
  10. "Dalton's atomic theory" (in en). https://www.oxfordreference.com/display/10.1093/oi/authority.20110803095658664. 
  11. Boltzmann, Ludwig (1884). "Ableitung des Stefan'schen Gesetzes, betreffend die Abhängigkeit der Wärmestrahlung von der Temperatur aus der electromagnetischen Lichttheorie" (in de). Annalen der Physik und Chemie 258 (6): 291–294. doi:10.1002/andp.18842580616. Bibcode1884AnP...258..291B. https://babel.hathitrust.org/cgi/pt?id=uc1.a0002763670;view=1up;seq=327. 
  12. Sandage, Allan (1988). "Comment on the 1925 Trumpler Paper on Stellar Evolution". Publications of the Astronomical Society of the Pacific 100 (625): 293–296. doi:10.1086/132169. ISSN 0004-6280. https://www.jstor.org/stable/40679099. 
  13. "What are stars made of? A century ago, this woman found out—and changed physics forever" (in en). January 1, 2025. https://www.nationalgeographic.com/science/article/what-are-stars-made-of-cecilia-payne. 
  14. Bethe, H. A. (1939). "Energy Production in Stars". Physical Review 55 (5): 434–456. doi:10.1103/PhysRev.55.434. PMID 17835673. Bibcode1939PhRv...55..434B. 
  15. Gell-Mann, Murray (15 March 1961). The Eightfold Way: A theory of strong interaction symmetry (Report). Office of Scientific and Technical Information (OSTI). doi:10.2172/4008239
  16. Ne'eman, Y. (August 1961). "Derivation of strong interactions from a gauge invariance". Nuclear Physics. 26 (2). Amsterdam: North-Holland Publishing Co.: 222–229. Bibcode:1961NucPh..26..222N. doi:10.1016/0029-5582(61)90134-1.
  17. Bekenstein, A. (1972). "Black holes and the second law". Lettere al Nuovo Cimento 4 (15): 99–104. doi:10.1007/BF02757029. 
  18. S. W. Hawking. (1975) "Particle creation by black holes." Comm. Math. Phys. 43 (3) 199 - 220
  19. Rafelski, Johann (2020). "Discovery of Quark-Gluon Plasma: Strangeness Diaries" (in en). The European Physical Journal Special Topics 229 (1): 1–140. doi:10.1140/epjst/e2019-900263-x. ISSN 1951-6355. Bibcode2020EPJST.229....1R. 
  20. "New State of Matter created at CERN" (in en). https://home.cern/news/press-release/cern/new-state-matter-created-cern. 
  21. CMS collaboration (2012). "Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC". Physics Letters B 716 (1): 30–61. doi:10.1016/j.physletb.2012.08.021. Bibcode2012PhLB..716...30C. 
  22. ATLAS collaboration (2012). "Observation of a New Particle in the Search for the Standard Model Higgs Boson with the ATLAS Detector at the LHC". Physics Letters B 716 (1): 1–29. doi:10.1016/j.physletb.2012.08.020. Bibcode2012PhLB..716....1A. 
  23. Rini, Matteo (June 29, 2023). "Researchers Capture Gravitational-Wave Background with Pulsar "Antennae"". Physics Magazine 16: p. 118. doi:10.1103/Physics.16.118. Bibcode2023PhyOJ..16..118R. https://physics.aps.org/articles/v16/118. ""Four PTA collaborations have delivered evidence for a stochastic background of nanohertz gravitational waves"" 
  24. Palivela, Ananya (June 30, 2023). "IceCube creates first image of Milky Way in neutrinos". https://www.astronomy.com/science/icecube-creates-first-image-of-milky-way-in-neutrinos/. ""IceCube Neutrino Observatory, this array has now allowed astronomers to image the Milky Way — not using light, but particles"" 


Template:Theoretical physics