Bilinear form
In mathematics, a bilinear form is a bilinear map V × V → K on a vector space V (the elements of which are called vectors) over a field K (the elements of which are called scalars). In other words, a bilinear form is a function B : V × V → K that is linear in each argument separately:
- B(u + v, w) = B(u, w) + B(v, w) and B(λu, v) = λB(u, v)
- B(u, v + w) = B(u, v) + B(u, w) and B(u, λv) = λB(u, v)
The dot product on [math]\displaystyle{ \R^n }[/math] is an example of a bilinear form.[1]
The definition of a bilinear form can be extended to include modules over a ring, with linear maps replaced by module homomorphisms.
When K is the field of complex numbers C, one is often more interested in sesquilinear forms, which are similar to bilinear forms but are conjugate linear in one argument.
Coordinate representation
Let V be an n-dimensional vector space with basis {e1, …, en}.
The n × n matrix A, defined by Aij = B(ei, ej) is called the matrix of the bilinear form on the basis {e1, …, en}.
If the n × 1 matrix x represents a vector x with respect to this basis, and similarly, the n × 1 matrix y represents another vector y, then: [math]\displaystyle{ B(\mathbf{x}, \mathbf{y}) = \mathbf{x}^\textsf{T} A\mathbf{y} = \sum_{i,j=1}^n x_i A_{ij} y_j. }[/math]
A bilinear form has different matrices on different bases. However, the matrices of a bilinear form on different bases are all congruent. More precisely, if {f1, …, fn} is another basis of V, then [math]\displaystyle{ \mathbf{f}_j=\sum_{i=1}^n S_{i,j}\mathbf{e}_i, }[/math] where the [math]\displaystyle{ S_{i,j} }[/math] form an invertible matrix S. Then, the matrix of the bilinear form on the new basis is STAS.
Maps to the dual space
Every bilinear form B on V defines a pair of linear maps from V to its dual space V∗. Define B1, B2: V → V∗ by
This is often denoted as
where the dot ( ⋅ ) indicates the slot into which the argument for the resulting linear functional is to be placed (see Currying).
For a finite-dimensional vector space V, if either of B1 or B2 is an isomorphism, then both are, and the bilinear form B is said to be nondegenerate. More concretely, for a finite-dimensional vector space, non-degenerate means that every non-zero element pairs non-trivially with some other element:
- [math]\displaystyle{ B(x,y)=0 }[/math] for all [math]\displaystyle{ y \in V }[/math] implies that x = 0 and
- [math]\displaystyle{ B(x,y)=0 }[/math] for all [math]\displaystyle{ x \in V }[/math] implies that y = 0.
The corresponding notion for a module over a commutative ring is that a bilinear form is unimodular if V → V∗ is an isomorphism. Given a finitely generated module over a commutative ring, the pairing may be injective (hence "nondegenerate" in the above sense) but not unimodular. For example, over the integers, the pairing B(x, y) = 2xy is nondegenerate but not unimodular, as the induced map from V = Z to V∗ = Z is multiplication by 2.
If V is finite-dimensional then one can identify V with its double dual V∗∗. One can then show that B2 is the transpose of the linear map B1 (if V is infinite-dimensional then B2 is the transpose of B1 restricted to the image of V in V∗∗). Given B one can define the transpose of B to be the bilinear form given by
The left radical and right radical of the form B are the kernels of B1 and B2 respectively;[2] they are the vectors orthogonal to the whole space on the left and on the right.[3]
If V is finite-dimensional then the rank of B1 is equal to the rank of B2. If this number is equal to dim(V) then B1 and B2 are linear isomorphisms from V to V∗. In this case B is nondegenerate. By the rank–nullity theorem, this is equivalent to the condition that the left and equivalently right radicals be trivial. For finite-dimensional spaces, this is often taken as the definition of nondegeneracy:
Given any linear map A : V → V∗ one can obtain a bilinear form B on V via
This form will be nondegenerate if and only if A is an isomorphism.
If V is finite-dimensional then, relative to some basis for V, a bilinear form is degenerate if and only if the determinant of the associated matrix is zero. Likewise, a nondegenerate form is one for which the determinant of the associated matrix is non-zero (the matrix is non-singular). These statements are independent of the chosen basis. For a module over a commutative ring, a unimodular form is one for which the determinant of the associate matrix is a unit (for example 1), hence the term; note that a form whose matrix determinant is non-zero but not a unit will be nondegenerate but not unimodular, for example B(x, y) = 2xy over the integers.
Symmetric, skew-symmetric and alternating forms
We define a bilinear form to be
- symmetric if B(v, w) = B(w, v) for all v, w in V;
- alternating if B(v, v) = 0 for all v in V;
- skew-symmetric or antisymmetric if B(v, w) = −B(w, v) for all v, w in V;
- Proposition
- Every alternating form is skew-symmetric.
- Proof
- This can be seen by expanding B(v + w, v + w).
If the characteristic of K is not 2 then the converse is also true: every skew-symmetric form is alternating. However, if char(K) = 2 then a skew-symmetric form is the same as a symmetric form and there exist symmetric/skew-symmetric forms that are not alternating.
A bilinear form is symmetric (respectively skew-symmetric) if and only if its coordinate matrix (relative to any basis) is symmetric (respectively skew-symmetric). A bilinear form is alternating if and only if its coordinate matrix is skew-symmetric and the diagonal entries are all zero (which follows from skew-symmetry when char(K) ≠ 2).
A bilinear form is symmetric if and only if the maps B1, B2: V → V∗ are equal, and skew-symmetric if and only if they are negatives of one another. If char(K) ≠ 2 then one can decompose a bilinear form into a symmetric and a skew-symmetric part as follows [math]\displaystyle{ B^{+} = \tfrac{1}{2} (B + {}^{\text{t}}B) \qquad B^{-} = \tfrac{1}{2} (B - {}^{\text{t}}B) , }[/math] where tB is the transpose of B (defined above).
Derived quadratic form
For any bilinear form B : V × V → K, there exists an associated quadratic form Q : V → K defined by Q : V → K : v ↦ B(v, v).
When char(K) ≠ 2, the quadratic form Q is determined by the symmetric part of the bilinear form B and is independent of the antisymmetric part. In this case there is a one-to-one correspondence between the symmetric part of the bilinear form and the quadratic form, and it makes sense to speak of the symmetric bilinear form associated with a quadratic form.
When char(K) = 2 and dim V > 1, this correspondence between quadratic forms and symmetric bilinear forms breaks down.
Reflexivity and orthogonality
A bilinear form B is reflexive if and only if it is either symmetric or alternating.[4] In the absence of reflexivity we have to distinguish left and right orthogonality. In a reflexive space the left and right radicals agree and are termed the kernel or the radical of the bilinear form: the subspace of all vectors orthogonal with every other vector. A vector v, with matrix representation x, is in the radical of a bilinear form with matrix representation A, if and only if Ax = 0 ⇔ xTA = 0. The radical is always a subspace of V. It is trivial if and only if the matrix A is nonsingular, and thus if and only if the bilinear form is nondegenerate.
Suppose W is a subspace. Define the orthogonal complement[5] [math]\displaystyle{ W^{\perp} = \left\{\mathbf{v} \mid B(\mathbf{v}, \mathbf{w}) = 0 \text{ for all } \mathbf{w} \in W\right\} . }[/math]
For a non-degenerate form on a finite-dimensional space, the map V/W → W⊥ is bijective, and the dimension of W⊥ is dim(V) − dim(W).
Different spaces
Much of the theory is available for a bilinear mapping from two vector spaces over the same base field to that field
Here we still have induced linear mappings from V to W∗, and from W to V∗. It may happen that these mappings are isomorphisms; assuming finite dimensions, if one is an isomorphism, the other must be. When this occurs, B is said to be a perfect pairing.
In finite dimensions, this is equivalent to the pairing being nondegenerate (the spaces necessarily having the same dimensions). For modules (instead of vector spaces), just as how a nondegenerate form is weaker than a unimodular form, a nondegenerate pairing is a weaker notion than a perfect pairing. A pairing can be nondegenerate without being a perfect pairing, for instance Z × Z → Z via (x, y) ↦ 2xy is nondegenerate, but induces multiplication by 2 on the map Z → Z∗.
Terminology varies in coverage of bilinear forms. For example, F. Reese Harvey discusses "eight types of inner product".[6] To define them he uses diagonal matrices Aij having only +1 or −1 for non-zero elements. Some of the "inner products" are symplectic forms and some are sesquilinear forms or Hermitian forms. Rather than a general field K, the instances with real numbers R, complex numbers C, and quaternions H are spelled out. The bilinear form [math]\displaystyle{ \sum_{k=1}^p x_k y_k - \sum_{k=p+1}^n x_k y_k }[/math] is called the real symmetric case and labeled R(p, q), where p + q = n. Then he articulates the connection to traditional terminology:[7]
Some of the real symmetric cases are very important. The positive definite case R(n, 0) is called Euclidean space, while the case of a single minus, R(n−1, 1) is called Lorentzian space. If n = 4, then Lorentzian space is also called Minkowski space or Minkowski spacetime. The special case R(p, p) will be referred to as the split-case.
Relation to tensor products
By the universal property of the tensor product, there is a canonical correspondence between bilinear forms on V and linear maps V ⊗ V → K. If B is a bilinear form on V the corresponding linear map is given by
In the other direction, if F : V ⊗ V → K is a linear map the corresponding bilinear form is given by composing F with the bilinear map V × V → V ⊗ V that sends (v, w) to v⊗w.
The set of all linear maps V ⊗ V → K is the dual space of V ⊗ V, so bilinear forms may be thought of as elements of (V ⊗ V)∗ which (when V is finite-dimensional) is canonically isomorphic to V∗ ⊗ V∗.
Likewise, symmetric bilinear forms may be thought of as elements of (Sym2V)* (dual of the second symmetric power of V) and alternating bilinear forms as elements of (Λ2V)∗ ≃ Λ2V∗ (the second exterior power of V∗). If charK ≠ 2, (Sym2V)* ≃ Sym2(V∗).
On normed vector spaces
Definition: A bilinear form on a normed vector space (V, ‖⋅‖) is bounded, if there is a constant C such that for all u, v ∈ V, [math]\displaystyle{ B ( \mathbf{u} , \mathbf{v}) \le C \left\| \mathbf{u} \right\| \left\|\mathbf{v} \right\| . }[/math]
Definition: A bilinear form on a normed vector space (V, ‖⋅‖) is elliptic, or coercive, if there is a constant c > 0 such that for all u ∈ V, [math]\displaystyle{ B ( \mathbf{u} , \mathbf{u}) \ge c \left\| \mathbf{u} \right\| ^2 . }[/math]
Generalization to modules
Given a ring R and a right R-module M and its dual module M∗, a mapping B : M∗ × M → R is called a bilinear form if
for all u, v ∈ M∗, all x, y ∈ M and all α, β ∈ R.
The mapping ⟨⋅,⋅⟩ : M∗ × M → R : (u, x) ↦ u(x) is known as the natural pairing, also called the canonical bilinear form on M∗ × M.[8]
A linear map S : M∗ → M∗ : u ↦ S(u) induces the bilinear form B : M∗ × M → R : (u, x) ↦ ⟨S(u), x⟩, and a linear map T : M → M : x ↦ T(x) induces the bilinear form B : M∗ × M → R : (u, x) ↦ ⟨u, T(x)⟩.
Conversely, a bilinear form B : M∗ × M → R induces the R-linear maps S : M∗ → M∗ : u ↦ (x ↦ B(u, x)) and T′ : M → M∗∗ : x ↦ (u ↦ B(u, x)). Here, M∗∗ denotes the double dual of M.
See also
Citations
- ↑ "Chapter 3. Bilinear forms — Lecture notes for MA1212". 2021-01-16. https://www.maths.tcd.ie/~pete/ma1212/chapter3.pdf.
- ↑ Jacobson 2009, p. 346.
- ↑ Zhelobenko 2006, p. 11.
- ↑ Grove 1997.
- ↑ Adkins & Weintraub 1992, p. 359.
- ↑ Harvey 1990, p. 22.
- ↑ Harvey 1990, p. 23.
- ↑ Bourbaki 1970, p. 233.
References
- Adkins, William A.; Weintraub, Steven H. (1992), Algebra: An Approach via Module Theory, Graduate Texts in Mathematics, 136, Springer-Verlag, ISBN 3-540-97839-9
- Bourbaki, N. (1970), Algebra, Springer
- Cooperstein, Bruce (2010), "Ch 8: Bilinear Forms and Maps", Advanced Linear Algebra, CRC Press, pp. 249–88, ISBN 978-1-4398-2966-0
- Grove, Larry C. (1997), Groups and characters, Wiley-Interscience, ISBN 978-0-471-16340-4
- Halmos, Paul R. (1974), Finite-dimensional vector spaces, Undergraduate Texts in Mathematics, Berlin, New York: Springer-Verlag, ISBN 978-0-387-90093-3
- Harvey, F. Reese (1990), "Chapter 2: The Eight Types of Inner Product Spaces", Spinors and calibrations, Academic Press, pp. 19–40, ISBN 0-12-329650-1
- Popov, V. L. (1987), Hazewinkel, M., ed., Bilinear form, 1, Kluwer Academic Publishers, pp. 390–392, https://www.encyclopediaofmath.org/index.php/Bilinear_form. Also: Bilinear form, p. 390, at Google Books
- Jacobson, Nathan (2009), Basic Algebra, I (2nd ed.), Courier Corporation, ISBN 978-0-486-47189-1
- Milnor, J.; Husemoller, D. (1973), Symmetric Bilinear Forms, Ergebnisse der Mathematik und ihrer Grenzgebiete, 73, Springer-Verlag, ISBN 3-540-06009-X
- Porteous, Ian R. (1995), Clifford Algebras and the Classical Groups, Cambridge Studies in Advanced Mathematics, 50, Cambridge University Press, ISBN 978-0-521-55177-9
- Shafarevich, I. R.; A. O. Remizov (2012), Linear Algebra and Geometry, Springer, ISBN 978-3-642-30993-9, https://www.springer.com/mathematics/algebra/book/978-3-642-30993-9
- Shilov, Georgi E. (1977), Silverman, Richard A., ed., Linear Algebra, Dover, ISBN 0-486-63518-X
- Zhelobenko, Dmitriĭ Petrovich (2006), Principal Structures and Methods of Representation Theory, Translations of Mathematical Monographs, American Mathematical Society, ISBN 0-8218-3731-1
External links
- Hazewinkel, Michiel, ed. (2001), "Bilinear form", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4, https://www.encyclopediaofmath.org/index.php?title=p/b016250
- "Bilinear form". http://planetmath.org/?op=getobj&from=objects&id={{{id}}}.
Original source: https://en.wikipedia.org/wiki/Bilinear form.
Read more |