Convergent matrix

From HandWiki
Revision as of 09:02, 20 July 2022 by imported>Importwiki (add)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Matrix that converges to zero matrix

In linear algebra, a convergent matrix is a matrix that converges to the zero matrix under matrix exponentiation.

Background

When successive powers of a matrix T become small (that is, when all of the entries of T approach zero, upon raising T to successive powers), the matrix T converges to the zero matrix. A regular splitting of a non-singular matrix A results in a convergent matrix T. A semi-convergent splitting of a matrix A results in a semi-convergent matrix T. A general iterative method converges for every initial vector if T is convergent, and under certain conditions if T is semi-convergent.

Definition

We call an n × n matrix T a convergent matrix if

[math]\displaystyle{ \lim_{k \to \infty}( \mathbf T^k)_{ij} = 0, }[/math]

 

 

 

 

(1)

for each i = 1, 2, ..., n and j = 1, 2, ..., n.[1][2][3]

Example

Let

[math]\displaystyle{ \begin{align} & \mathbf{T} = \begin{pmatrix} \frac{1}{4} & \frac{1}{2} \\[4pt] 0 & \frac{1}{4} \end{pmatrix}. \end{align} }[/math]

Computing successive powers of T, we obtain

[math]\displaystyle{ \begin{align} & \mathbf{T}^2 = \begin{pmatrix} \frac{1}{16} & \frac{1}{4} \\[4pt] 0 & \frac{1}{16} \end{pmatrix}, \quad \mathbf{T}^3 = \begin{pmatrix} \frac{1}{64} & \frac{3}{32} \\[4pt] 0 & \frac{1}{64} \end{pmatrix}, \quad \mathbf{T}^4 = \begin{pmatrix} \frac{1}{256} & \frac{1}{32} \\[4pt] 0 & \frac{1}{256} \end{pmatrix}, \quad \mathbf{T}^5 = \begin{pmatrix} \frac{1}{1024} & \frac{5}{512} \\[4pt] 0 & \frac{1}{1024} \end{pmatrix}, \end{align} }[/math]
[math]\displaystyle{ \begin{align} \mathbf{T}^6 = \begin{pmatrix} \frac{1}{4096} & \frac{3}{1024} \\[4pt] 0 & \frac{1}{4096} \end{pmatrix}, \end{align} }[/math]

and, in general,

[math]\displaystyle{ \begin{align} \mathbf{T}^k = \begin{pmatrix} (\frac{1}{4})^k & \frac{k}{2^{2k - 1}} \\[4pt] 0 & (\frac{1}{4})^k \end{pmatrix}. \end{align} }[/math]

Since

[math]\displaystyle{ \lim_{k \to \infty} \left( \frac{1}{4} \right)^k = 0 }[/math]

and

[math]\displaystyle{ \lim_{k \to \infty} \frac{k}{2^{2k - 1}} = 0, }[/math]

T is a convergent matrix. Note that ρ(T) = 1/4, where ρ(T) represents the spectral radius of T, since 1/4 is the only eigenvalue of T.

Characterizations

Let T be an n × n matrix. The following properties are equivalent to T being a convergent matrix:

  1. [math]\displaystyle{ \lim_{k \to \infty} \| \mathbf T^k \| = 0, }[/math] for some natural norm;
  2. [math]\displaystyle{ \lim_{k \to \infty} \| \mathbf T^k \| = 0, }[/math] for all natural norms;
  3. [math]\displaystyle{ \rho( \mathbf T ) \lt 1 }[/math];
  4. [math]\displaystyle{ \lim_{k \to \infty} \mathbf T^k \mathbf x = \mathbf 0, }[/math] for every x.[4][5][6][7]

Iterative methods

Main page: Iterative method

A general iterative method involves a process that converts the system of linear equations

[math]\displaystyle{ \mathbf{Ax} = \mathbf{b} }[/math]

 

 

 

 

(2)

into an equivalent system of the form

[math]\displaystyle{ \mathbf{x} = \mathbf{Tx} + \mathbf{c} }[/math]

 

 

 

 

(3)

for some matrix T and vector c. After the initial vector x(0) is selected, the sequence of approximate solution vectors is generated by computing

[math]\displaystyle{ \mathbf{x}^{(k + 1)} = \mathbf{Tx}^{(k)} + \mathbf{c} }[/math]

 

 

 

 

(4)

for each k ≥ 0.[8][9] For any initial vector x(0)[math]\displaystyle{ \mathbb{R}^n }[/math], the sequence [math]\displaystyle{ \lbrace \mathbf{x}^{ \left( k \right) } \rbrace _{k = 0}^{\infty} }[/math] defined by (4), for each k ≥ 0 and c ≠ 0, converges to the unique solution of (3) if and only if ρ(T) < 1, that is, T is a convergent matrix.[10][11]

Regular splitting

Main page: Matrix splitting

A matrix splitting is an expression which represents a given matrix as a sum or difference of matrices. In the system of linear equations (2) above, with A non-singular, the matrix A can be split, that is, written as a difference

[math]\displaystyle{ \mathbf{A} = \mathbf{B} - \mathbf{C} }[/math]

 

 

 

 

(5)

so that (2) can be re-written as (4) above. The expression (5) is a regular splitting of A if and only if B−10 and C0, that is, B−1 and C have only nonnegative entries. If the splitting (5) is a regular splitting of the matrix A and A−10, then ρ(T) < 1 and T is a convergent matrix. Hence the method (4) converges.[12][13]

Semi-convergent matrix

We call an n × n matrix T a semi-convergent matrix if the limit

[math]\displaystyle{ \lim_{k \to \infty} \mathbf T^k }[/math]

 

 

 

 

(6)

exists.[14] If A is possibly singular but (2) is consistent, that is, b is in the range of A, then the sequence defined by (4) converges to a solution to (2) for every x(0)[math]\displaystyle{ \mathbb{R}^n }[/math] if and only if T is semi-convergent. In this case, the splitting (5) is called a semi-convergent splitting of A.[15]

See also

Notes

  1. (Burden Faires)
  2. (Isaacson Keller)
  3. (Varga 1962)
  4. (Burden Faires)
  5. (Isaacson Keller)
  6. (Varga 1960)
  7. (Varga 1962)
  8. (Burden Faires)
  9. (Varga 1962)
  10. (Burden Faires)
  11. (Isaacson Keller)
  12. (Varga 1960)
  13. (Varga 1962)
  14. (Meyer & Plemmons 1977)
  15. (Meyer & Plemmons 1977)

References

  • Burden, Richard L.; Faires, J. Douglas (1993), Numerical Analysis (5th ed.), Boston: Prindle, Weber and Schmidt, ISBN 0-534-93219-3, https://archive.org/details/numericalanalysi00burd .
  • Isaacson, Eugene; Keller, Herbert Bishop (1994), Analysis of Numerical Methods, New York: Dover, ISBN 0-486-68029-0 .
  • Carl D. Meyer, Jr.; R. J. Plemmons (Sep 1977). "Convergent Powers of a Matrix with Applications to Iterative Methods for Singular Linear Systems". SIAM Journal on Numerical Analysis 14 (4): 699–705. doi:10.1137/0714047. 
  • Varga, Richard S. (1960). "Factorization and Normalized Iterative Methods". in Langer, Rudolph E.. Boundary Problems in Differential Equations. Madison: University of Wisconsin Press. pp. 121–142. 
  • Varga, Richard S. (1962), Matrix Iterative Analysis, New Jersey: Prentice–Hall .