Astronomy:CTQ 327

From HandWiki
CTQ 327
DSS image of CTQ 327.
Observation data (J2000.0 epoch)
ConstellationHydra
Right ascension 13h 55m 43.43s
Declination−22° 57′ 23.16″
Redshift1.370000
Helio radial velocity410,716 km/s
Distance8.735 Gly
Apparent magnitude (B)18.2
Characteristics
TypeQSO
Other designations
2MASSI J1355434-225723, 2CXO J135543.4-225723, CTS 0327, CTS M15.16

CTQ 327 also known as Q 1355-2257, is a gravitationally-lensed quasar located in the constellation of Hydra. It was discovered in 1992 from the Calan-Tololo Survey,[1] with its redshift of the object calculated as (z) 1.37 by N.D. Morgan during the Hubble Space Telescope Imaging Spectrograph snapshot survey in August 2003.[2]

Description

CTQ 327 is a double imaged quasar.[3][4] When imaged by Morgan, the object is found to separate into two bright images or components, with an estimated separation gap of 1.22 arcseconds and a g-band flux ratio roughly 5 to 1. The components are found to display continuum and emission line features in their spectra, mainly doubly ionized carbon and magnesium, despite not similar to one another, with component A having much weaker emission lines compared to component B.[2][5][6]

The lensing galaxy of CTQ 327 is resolved and classified an early-type elliptical galaxy with a redshift of (z) 0.70, located from component B by 0.29 milliarcseconds.[2][7] An absorption feature is found to be associated with it at (z) 0.48.[8] A stellar mass of 11.56 Mʘ, and an effective radius of 1.24 ± 0.29 arcseconds has been found for the lens galaxy with the total Einstein radius of 0.62 arcseconds.[9]

The quasar displays time-delays. Based on observations by P. Saha using a lens model, the predicted time-delay is -89+28-39 days long.[6] A more recent study in August 2020, estimated a new time-delay of -81.5+10.8-12.0 days based on a measurement pipeline.[10] It is shown the flux ratios of both components have temporal variations based on g-band Magellan observations of 0.14 magnitude during a period of over three months. Comparison of second-epoch data obtained in March and June, have also found component A of CTQ 327 underwent a significant decrease in brightness by 0.125 ± 0.001 magnitude while component B showed no observed changes.[2]

CTQ 327 has evidence of chromatic microlensing with wavelengths greater than ʎ > 6180Å. Astronomers also noted, the core of emission lines and continuum also displayed a discrepancy in magnitude results of -0.06 and +0.08 respectively. They also noted the accretion disk of CTQ 327 is larger with a size of 3.6+3.0-1.6 x 1.3 ± 0.6 M/Mʘ and has a temperature profile of 2.0 ± 0.7. The black hole mass is estimated as 1.1 x 109 Mʘ.[11]

References

  1. Maza, J.; Ruiz, M. T.; Gonzalez, L. E.; Wischnjewsky, M.; Antezana, R. (April 1993). "Calan-Tololo Survey. V. Two hundred new southern quasars." (in en). Revista Mexicana de Astronomía y Astrofísica 25: 51–57. ISSN 0185-1101. Bibcode1993RMxAA..25...51M. https://articles.adsabs.harvard.edu/pdf/1993RMxAA..25...51M. 
  2. 2.0 2.1 2.2 2.3 Morgan, N. D.; Gregg, M. D.; Wisotzki, L.; Becker, R.; Maza, J.; Schechter, P. L.; White, R. L. (August 2003). "CTQ 327: A New Gravitational Lens" (in en). The Astronomical Journal 126 (2): 696–705. doi:10.1086/376470. ISSN 0004-6256. Bibcode2003AJ....126..696M. https://iopscience.iop.org/article/10.1086/376470/pdf. 
  3. Morgan, Nicholas D. (2002). "New optical surveys for gravitationally lensed quasars" (in en). Ph.D. Thesis: 1287. Bibcode2002PhDT........29M. https://ui.adsabs.harvard.edu/abs/2002PhDT........29M/abstract. 
  4. Eigenbrod, A.; Courbin, F.; Meylan, G. (2007-04-01). "COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses - VI. Redshift of the lensing galaxy in seven gravitationally lensed quasars" (in en). Astronomy & Astrophysics 465 (1): 51–56. doi:10.1051/0004-6361:20066939. ISSN 0004-6361. Bibcode2007A&A...465...51E. https://www.aanda.org/articles/aa/pdf/2007/13/aa6939-06.pdf. 
  5. Fian, C.; Mediavilla, E.; Motta, V.; Jiménez-Vicente, J.; Muñoz, J. A.; Chelouche, D.; Hanslmeier, A. (2021-09-01). "Microlensing of the broad emission lines in 27 gravitationally lensed quasars - Broad line region structure and kinematics" (in en). Astronomy & Astrophysics 653: A109. doi:10.1051/0004-6361/202039829. ISSN 0004-6361. Bibcode2021A&A...653A.109F. https://www.aanda.org/articles/aa/pdf/2021/09/aa39829-20.pdf. 
  6. 6.0 6.1 Saha, P.; Courbin, F.; Sluse, D.; Dye, S.; Meylan, G. (2006-05-01). "COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses - IV. Models of prospective time-delay lenses" (in en). Astronomy & Astrophysics 450 (2): 461–469. doi:10.1051/0004-6361:20052929. ISSN 0004-6361. Bibcode2006A&A...450..461S. https://www.aanda.org/articles/aa/pdf/2006/17/aa2929-05.pdf. 
  7. Eigenbrod, A.; Courbin, F.; Meylan, G.; Vuissoz, C.; Magain, P. (2006-06-01). "COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses - III. Redshift of the lensing galaxy in eight gravitationally lensed quasars" (in en). Astronomy & Astrophysics 451 (3): 759–766. doi:10.1051/0004-6361:20054454. ISSN 0004-6361. Bibcode2006A&A...451..759E. https://www.aanda.org/articles/aa/pdf/2006/21/aa4454-05.pdf. 
  8. Ofek, Eran O.; Maoz, Dan; Rix, Hans-Walter; Kochanek, Christopher S.; Falco, Emilio E. (April 2006). "Spectroscopic Redshifts for Seven Lens Galaxies" (in en). The Astrophysical Journal 641 (1): 70–77. doi:10.1086/500403. ISSN 0004-637X. Bibcode2006ApJ...641...70O. 
  9. Oguri, Masamune; Rusu, Cristian E.; Falco, Emilio E. (April 2014). "The stellar and dark matter distributions in elliptical galaxies from the ensemble of strong gravitational lenses" (in en). Monthly Notices of the Royal Astronomical Society 439 (3): 2494–2504. doi:10.1093/mnras/stu106. ISSN 0035-8711. 
  10. Millon, M.; Courbin, F.; Bonvin, V.; Paic, E.; Meylan, G.; Tewes, M.; Sluse, D.; Magain, P. et al. (2020-08-01). "COSMOGRAIL - XIX. Time delays in 18 strongly lensed quasars from 15 years of optical monitoring" (in en). Astronomy & Astrophysics 640: A105. doi:10.1051/0004-6361/202037740. ISSN 0004-6361. Bibcode2020A&A...640A.105M. https://www.aanda.org/articles/aa/abs/2020/08/aa37740-20/aa37740-20.html. 
  11. Rojas, K.; Motta, V.; Mediavilla, E.; Jiménez-Vicente, J.; Falco, E.; Fian, C. (2020-02-06). "Microlensing Analysis for the Gravitational Lens Systems SDSS0924+0219, Q1355-2257, and SDSS1029+2623". The Astrophysical Journal 890 (1): 3. doi:10.3847/1538-4357/ab63cb. ISSN 0004-637X. Bibcode2020ApJ...890....3R.