Astronomy:Tau Sagittarii

From HandWiki
Short description: Orange-hued giant star in the constellation Sagittarius
τ Sagittarii
Sagittarius constellation map.svg
Red circle.svg
Location of τ Sagittarii (circled)
Observation data
Equinox J2000.0]] (ICRS)
Constellation Sagittarius
Right ascension  19h 06m 56.40897s[1]
Declination –27° 40′ 13.5189″[1]
Apparent magnitude (V) +3.326[2]
Characteristics
Spectral type K1 III[3]
U−B color index +1.185[2]
B−V color index +1.170[2]
Astrometry
Radial velocity (Rv)+45.4[4] km/s
Proper motion (μ) RA: –50.61[1] mas/yr
Dec.: -249.80[1] mas/yr
Parallax (π)28.3195 ± 0.3134[5] mas
Distance115 ± 1 ly
(35.3 ± 0.4 pc)
Absolute magnitude (MV)0.48[6]
Details[7]
Mass1.25 M
Radius15.71 R
Luminosity87.6 L
Surface gravity (log g)2.15 cgs
Temperature4,459 K
Metallicity [Fe/H]–0.27 dex
Rotational velocity (v sin i)1.04[8] km/s
Age7.91 Gyr
Other designations
Namalsadirah 2, Rabi al Sadira, τ Sagittarii, τ Sgr, Tau Sgr, 40 Sagittarii, CPD−27°6617, FK5 1496, GC 26291, HD 177716, HIP 93864, HR 7234, PPM 269078, SAO 187683
Database references
SIMBADdata

Tau Sagittarii (Tau Sgr, τ Sagittarii, τ Sgr) is a star in the southern zodiac constellation of Sagittarius.

Description

With an apparent visual magnitude of +3.3,[2] this is one of the brighter members of the constellation. The distance of this star from Earth is roughly 122 light-years (37 parsecs), based upon parallax measurements.[1]

This is a spectral type K1 giant star with about 1.25 M. The stellar envelope is slightly cooler than the Sun with an effective temperature of 4,459 K, giving the star a light orange color. The interferometry-measured angular diameter of this star, after correcting for limb darkening, is 3.93 ± 0.04 mas,[9] which, at its estimated distance, equates to a physical radius of about 16 times the radius of the Sun.[10]

τ Sagittarii is a suspected double star although no companion has been confirmed yet. A lower metal content (Fe to H ratio is 54% lower than the sun's) and a high peculiar velocity (64 km/s, four times the local average) relative to the Sun suggest the star is a visitor from a different part of the Galaxy. [11]

τ  Sagittarii is a red clump giant, a star with a similar mass to the sun which has exhausted its core hydrogen, passed through the red giant branch, and started helium fusion in its core.[12]

The Wow! signal

τ Sagittarii is the closest constellational star (a star that is part of the traditional outline of a constellation) to the origin of the 1977 Wow! signal.[13]

Name and etymology

References

  1. 1.0 1.1 1.2 1.3 1.4 van Leeuwen, F. (November 2007), "Validation of the new Hipparcos reduction", Astronomy and Astrophysics 474 (2): 653–664, doi:10.1051/0004-6361:20078357, Bibcode2007A&A...474..653V 
  2. 2.0 2.1 2.2 2.3 Celis S., L. (October 1975), "Photoelectric photometry of late-type variable stars", Astronomy and Astrophysics Supplement Series 22: 9–17, Bibcode1975A&AS...22....9C 
  3. Gray, R. O. et al. (July 2006), "Contributions to the Nearby Stars (NStars) Project: spectroscopy of stars earlier than M0 within 40 pc-The Southern Sample", The Astronomical Journal 132 (1): 161–170, doi:10.1086/504637, Bibcode2006AJ....132..161G 
  4. Wilson, R. E. (1953). "General Catalogue of Stellar Radial Velocities". Carnegie Institute Washington D.C. Publication (Carnegie Institute of Washington D.C.). Bibcode1953GCRV..C......0W. 
  5. Brown, A. G. A. (2021). "Gaia Early Data Release 3: Summary of the contents and survey properties". Astronomy & Astrophysics 649: A1. doi:10.1051/0004-6361/202039657. Bibcode2021A&A...649A...1G.  Gaia EDR3 record for this source at VizieR.
  6. Cardini, D. (January 2005), "Mg II chromospheric radiative loss rates in cool active and quiet stars", Astronomy and Astrophysics 430: 303–311, doi:10.1051/0004-6361:20041440, Bibcode2005A&A...430..303C. 
  7. Reffert, Sabine et al. (2015). "Precise radial velocities of giant stars. VII. Occurrence rate of giant extrasolar planets as a function of mass and metallicity". Astronomy & Astrophysics 574: A116. doi:10.1051/0004-6361/201322360. Bibcode2015A&A...574A.116R. 
  8. Hekker, S.; Meléndez, J. (2007). "Precise radial velocities of giant stars. III. Spectroscopic stellar parameters". Astronomy and Astrophysics 475 (3): 1003. doi:10.1051/0004-6361:20078233. Bibcode2007A&A...475.1003H. 
  9. Richichi, A. et al. (February 2005), "CHARM2: An updated Catalog of High Angular Resolution Measurements", Astronomy and Astrophysics 431 (2): 773–777, doi:10.1051/0004-6361:20042039, Bibcode2005A&A...431..773R 
  10. Lang, Kenneth R. (2006), Astrophysical formulae, Astronomy and astrophysics library, 1 (3rd ed.), Birkhäuser, ISBN 3-540-29692-1, https://books.google.com/books?id=OvTjLcQ4MCQC&pg=PA41 . The radius (R*) is given by:
    [math]\displaystyle{ \begin{align} 2\cdot R_* & = \frac{(10^{-3}\cdot 37\cdot 3.93)\ \text{AU}}{0.0046491\ \text{AU}/R_{\bigodot}} \\ & \approx 31.3\cdot R_{\bigodot} \end{align} }[/math]
  11. "The Teapot: A Guide to Deep Sky Objects in Sagittarius – Constellation Guide". https://www.constellation-guide.com/teapot/. 
  12. Alves, David R. (2000). "K-Band Calibration of the Red Clump Luminosity". The Astrophysical Journal 539 (2): 732–741. doi:10.1086/309278. Bibcode2000ApJ...539..732A. 
  13. "The world's biggest mysteries scientists still can't solve". 2 September 2014. http://www.news.com.au/technology/science/the-worlds-biggest-mysteries-scientists-still-cant-solve/story-fnjwl1aw-1227045377722. 
  14. "Teapot". constellation-guide.com. http://www.constellation-guide.com/teapot/. Retrieved 2017-05-13. 
  15. 15.0 15.1 Allen, R. H. (1963). Star Names: Their Lore and Meaning (Reprint ed.). New York: Dover Publications Inc. p. 355. ISBN 0-486-21079-0. https://archive.org/details/starnamestheirlo00alle/page/355. Retrieved 2012-09-04. 
  16. Jack W. Rhoads - Technical Memorandum 33-507 - A Reduced Star Catalog Containing 537 Named Stars, Jet Propulsion Laboratory, California Institute of Technology; November 15, 1971
  17. (in Chinese) AEEA (Activities of Exhibition and Education in Astronomy) 天文教育資訊網 2006 年 5 月 11 日