Astronomy:WASP-41

From HandWiki
Short description: Star in the constellation Centaurus
WASP-41
Observation data
Equinox J2000.0]] (ICRS)
Constellation Centaurus
Right ascension  12h 42m 28.4950s[1]
Declination −30° 38′ 23.529″[1]
Apparent magnitude (V) 11.6[2]
Characteristics
Evolutionary stage main-sequence star
Spectral type G8V[3]
Astrometry
Radial velocity (Rv)4.153[1] km/s
Proper motion (μ) RA: 14.878[1] mas/yr
Dec.: 11.988[1] mas/yr
Parallax (π)6.1193 ± 0.0203[1] mas
Distance533 ± 2 ly
(163.4 ± 0.5 pc)
Details
Mass0.930±0.030[4] M
Radius0.900±0.050[4] R
Luminosity0.65[1] L
Surface gravity (log g)4.48[1] cgs
Temperature5,450±150[4] K
Metallicity [Fe/H]−0.080±0.090[4] dex
Rotation18.4 d[3]
Rotational velocity (v sin i)1.50±0.05[5] km/s
Age2.289±0.077[6] Gyr
Other designations
CD−29 98732, TYC 7247-587-1, GSC 07247-00587, 2MASS J12422849-3038235[7]
Database references
SIMBAD9873 data

WASP-41 is a G-type main-sequence star. Its surface temperature is 5450±150 K. WASP-41 is similar to the Sun in its concentration of heavy elements, with a metallicity Fe/H index of −0.080±0.090,[4] but is much younger at an age of 2.289±0.077 billion years.[6] The star does exhibit strong starspot activity, with spots covering 3% of the stellar surface.[5]

Multiplicity surveys did not detect any stellar companions as of 2017.[8]

Planetary system

In 2012, one planet, named WASP-41b, was discovered on a tight, circular orbit.[3] The transmission spectrum taken in 2017 was gray and featureless. No atmospheric constituents could be distinguished.[9] The planetary orbit of WASP-41b is slightly misaligned with the equatorial plane of the star, at a misalignment angle of 9.15+2.85−2.62°.[5] Planetary equilibrium temperature is 1242±12 K.[2]

Another planet, WASP-41c, was discovered in 2015.[10] The planets are too far apart to significantly affect each other's orbits.[11] The planetary equilibrium temperature of WASP-41c is 247±5 K.[10]

The WASP-41 planetary system[4]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b 0.941+0.065−0.064 MJ 0.04022±0.00044 3.0524010±0.000004 <0.12 87.700±0.080° 1.200±0.060 RJ
c[12] >3.2±0.20 MJ 1.36±0.04 421±2 0.294±0.024 >70°

References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Vallenari, A. et al. (2022). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy & Astrophysics. doi:10.1051/0004-6361/202243940  Gaia DR3 record for this source at VizieR.
  2. 2.0 2.1 Southworth, John; Tregloan-Reed, J.; Andersen, M. I.; Calchi Novati, S.; Ciceri, S.; Colque, J. P.; D'Ago, G.; Dominik, M. et al. (2015), High-precision photometry by telescope defocussing. III. WASP-22, WASP-41, WASP-42 and WASP-55, doi:10.1093/mnras/stw279 
  3. 3.0 3.1 3.2 Maxted, P. F. L.; Anderson, D. R.; Collier Cameron, A.; Hellier, C.; Queloz, D.; Smalley, B.; Street, R. A.; Triaud, A. H. M. J. et al. (2010), "WASP-41 b: A transiting hot Jupiter planet orbiting a magnetically-active G8 V star", Publications of the Astronomical Society of the Pacific 123 (903): 547–554, doi:10.1086/660007 
  4. 4.0 4.1 4.2 4.3 4.4 4.5 Bonomo, A. S.; Desidera, S.; Benatti, S.; Borsa, F.; Crespi, S.; Damasso, M.; Lanza, A. F.; Sozzetti, A. et al. (2017), "The GAPS Programme with HARPS-N@TNG XIV. Investigating giant planet migration history via improved eccentricity and mass determination for 231 transiting planets", Astronomy & Astrophysics A107: 602, doi:10.1051/0004-6361/201629882, Bibcode2017A&A...602A.107B 
  5. 5.0 5.1 5.2 Oshagh, M.; Triaud, A. H. M. J.; Burdanov, A.; Figueira, P.; Reiners, Ansgar; Santos, N. C.; Faria, J.; Boue, G. et al. (2018), "Activity induced variation in spin-orbit angles as derived from Rossiter-McLaughlin measurements", Astronomy & Astrophysics 619: A150, doi:10.1051/0004-6361/201833709, Bibcode2018A&A...619A.150O 
  6. 6.0 6.1 Gallet, F.; Gallet (2020), "TATOO: Tidal-chronology standalone tool to estimate the age of massive close-in planetary systems", Astronomy & Astrophysics 641: A38, doi:10.1051/0004-6361/202038058, Bibcode2020A&A...641A..38G 
  7. "CD-29 9873". SIMBAD. Centre de données astronomiques de Strasbourg. http://simbad.u-strasbg.fr/simbad/sim-basic?Ident=CD-29+9873. 
  8. Evans, D. F.; Southworth, J.; Smalley, B.; Jørgensen, U. G.; Dominik, M.; Andersen, M. I.; Bozza, V.; Bramich, D. M. et al. (2018), "High-resolution Imaging of Transiting Extrasolar Planetary systems (HITEP). II. Lucky Imaging results from 2015 and 2016", Astronomy & Astrophysics 610: A20, doi:10.1051/0004-6361/201731855, Bibcode2018A&A...610A..20E 
  9. Juvan, Ines G.; Lendl, M.; Cubillos, P. E.; Fossati, L.; Tregloan-Reed, J.; Lammer, H.; Guenther, E. W.; Hanslmeier, A. (2018), "PyTranSpot- A tool for multiband light curve modeling of planetary transits and stellar spots", Astronomy & Astrophysics 610: A15, doi:10.1051/0004-6361/201731345, Bibcode2018A&A...610A..15J 
  10. 10.0 10.1 Neveu-VanMalle, M. et al. (2016). "Hot Jupiters with relatives: Discovery of additional planets in orbit around WASP-41 and WASP-47". Astronomy and Astrophysics 586: A93. doi:10.1051/0004-6361/201526965. Bibcode2016A&A...586A..93N. https://www.aanda.org/articles/aa/full_html/2016/02/aa26965-15/aa26965-15.html. 
  11. Lai, Dong; Anderson, Kassandra R.; Pu, Bonan (2018), "How do External Companions Affect Spin-Orbit Misalignment of Hot Jupiters?", Monthly Notices of the Royal Astronomical Society 475 (4): 5231–5236, doi:10.1093/mnras/sty133, Bibcode2018MNRAS.475.5231L 
  12. Becker, Juliette C.; Vanderburg, Andrew; Adams, Fred C.; Khain, Tali; Bryan, Marta (2017), "Exterior Companions to Hot Jupiters Orbiting Cool Stars Are Coplanar", The Astronomical Journal 154 (6): 230, doi:10.3847/1538-3881/aa9176, Bibcode2017AJ....154..230B 

Coordinates: Sky map 12h 42m 28.4949s, −30° 38′ 23.5276″