Biology:Scleroprotein
Scleroproteins or fibrous proteins are one of the three main classifications of protein structure (alongside globular and membrane proteins).[1] Scleroproteins are made up of elongated or fibrous polypeptide chains which form filamentous and sheet-like structures. These kind of protein can be distinguished from globular protein by its low solubility in water. The roles of such proteins include protection and structural role by forming connective tissue, tendons, bone matrices, and muscle fiber.
Scleroprotein consist of many superfamilies including keratin, collagen, elastin, and Fibrin. Collagen is the most abundant protein which exists in vertebrae animal as tendon, cartilage and bone.
Biomolecular structure
A scleroprotein forms long protein filaments, which are shaped like rods or wires. Scleroproteins are structural proteins or storage proteins that are typically inert and water-insoluble. A scleroprotein occurs as an aggregate due to hydrophobic side chains that protrude from the molecule.
A scleroprotein's peptide sequence often has limited residues with repeats; these can form unusual secondary structures, such as a collagen helix. The structures often feature cross-links between chains (e.g., cys-cys disulfide bonds between keratin chains).
Scleroproteins tend not to denature as easily as globular proteins.
Miroshnikov et al. (1998) are among the researchers who have attempted to synthesize fibrous proteins.[2]
References
- ↑ Andreeva, A (2014). "SCOP2 prototype: a new approach to protein structure mining". Nucleic Acids Res 42 (Database issue): D310-4. doi:10.1093/nar/gkt1242. PMID 24293656.
- ↑ "Engineering trimeric fibrous proteins based on bacteriophage T4 adhesins". Protein Eng. 11 (4): 329–32. April 1998. doi:10.1093/protein/11.4.329. PMID 9680195.
External links
- Scleroproteins at the US National Library of Medicine Medical Subject Headings (MeSH)