Biology:Transmembrane protein 89

From HandWiki
Short description: Human gene


A representation of the 3D structure of the protein myoglobin showing turquoise α-helices.
Generic protein structure example


Transmembrane protein 89 (TMEM89) is a protein that in humans is encoded by the TMEM89 gene.

Gene

Structure

The TMEM89 gene is found on the minus strand of chromosome 3 (3p21.31) from 48,658,192 to 48,659,288 and is 1,011 nucleotides long.[1][2] The gene has two exons.[1][2] These two exons are not predicted to be alternatively spliced.[1][2]

Gene expression

The TMEM89 gene is most highly expressed in the testis.[1][2] TMEM89 is also found to be expressed at low levels in other tissues such as the stomach, kidneys, heart, ovaries, thyroid, colon, bone marrow, and in adrenal tissues.[1] This gene is also expressed in fetal heart, stomach, kidney, and intestine tissues.[1] Immunohistochemistry data has also found TMEM89 located in the cell membranes of the colon, fallopian tube, kidney, and testis tissues.[3][4] Expression of the TMEM89 gene has also been found in low amounts in the brain tissue from a mouse cerebellum.[5]

Gene expression neighborhood

Human TMEM89 is a part of the Human Protein Atlas expression cluster 23: SpermatidS - Flagellum & Golgi organization.[3][6] The 15 closest expression neighbors include OR4M1, ANTXRL, TGIF2LX, CPXCR1, C3orf84, CXorf66, CLDN17, C11orf94, USP50, SPDYE4, MMP20, SSMEM1, C17orf98, SPACA1, and LYZL1.[6]

Differential gene expression

TMEM89 expression is much higher in amniotic fluid derived hAKPC-P cells compared with immortalized hIPod line cells.[7] TMEM89 expression is higher in cells that have macrophage migration inhibitory factor (MIF) knocked down compared to the control.[8] TMEM89 expression is the lowest in cardiomyocytes from human embryonic stem cells, compared to expression in human embryonic stem cells, embryoid bodies with beating cardiomyocytes, and cardiomyocytes from fetal hearts.[9]

Clinical significance

Gene expression of TMEM89 was found to be upregulated in upper tract urothelial carcinomas, and therefore predicted as a possible biomarker secretory protein for these types of carcinomas.[10] The TMEM89 gene was found to be a potential modifier of autism spectrum disorder severity in a SNP analysis.[citation needed] Gene expression of TMEM89 was also used in a model that predicted the risk score for a potential relapse in stage 1 testicular germ cell tumors.[11]

Human TMEM89 Conceptual Translation[1][12][13][14][15][16][17]

Protein

Structure

Primary

The human TMEM89 protein is 159 amino acids long.[1] This protein has a molecular mass of ~17.5kDa and an isoelectric point of ~10 pI.[2][18] Proteins with a more basic pI are usually associated with the mitochondria or the plasma membrane and have fewer protein interactions.[19][20] The protein structure contains two topological domains (extracellular and cytoplasmic) and a helical transmembrane domain.[13][21][22] The human TMEM89 protein is rich in the amino acids histidine, leucine, and tryptophan.[14] The amino acids aspartate, asparagine, and phenylalanine are present in low amounts in the human TMEM89 protein.[14] Amino acid patterns such as ED are present in the human TMEM89 protein at low amounts, while the pattern KR-ED is present in high amounts.[14] Within the extracellular domain of the human TMEM89 protein, there are 3 cysteines with regular spacing.[14] In the cytoplasmic domain, there are two positive amino acid runs from amino acids 3-5 and 25-27.[14] These different amino acid patterns and protein domains can be visualized in the figures to the right.

Human TMEM89 SOSUI Hydrophobicity and Net Charge Density Graph[21]
SOSUI Human TMEM89 Wheel Plot[21]
Protter Human TMEM89 Snake Plot[22]

Secondary

The TMEM89 protein is only made up of α-helices and strands.[23][24] The α-helices are distributed all throughout the protein in all three domains.[23][24]

Tertiary

The tertiary structure of Human TMEM89 was predicted using Alphafold and I-Tasser software.[23][24] These structures can be seen on the right.

Human TMEM89 Tertiary Structure With Labeled Domains[23][25]
Human TMEM89 Tertiary Structure with Labeled Charges[25][23]
I-Tasser Human TMEM89 Signal Peptide and Extracellular Domain Structure Prediction[24][25]
I-Tasser and Alphafold Human TMEM89 Signal Peptide and Extracellular Domain Comparison[23][24][25]
I-Tasser Human TMEM89 Cytoplasmic Domain Structure Prediction[25][24]
I-Tasser and Alphafold Human TMEM89 Cytoplasmic Domain Comparison[23][25][24]

Post-translational modifications

The TMEM89 protein has a predicted N-myristylation site from amino acids 47-52, a predicted Src homology 3 (SH3) binding domain from amino acids 106-111, and one conserved predicted phosphorylation site at amino acid S117.[15][17][16] N-myristylation is a protein lipid modification that has roles in protein-protein interactions, cell signaling, and targeting proteins to endomembranes and the plasma membrane.[26] Proteins with SH3 binding domains are usually involved in signal transduction pathways, cytoskeleton organization, membrane trafficking, or organelle assembly.[27] Protein phosphorylation is an important process involved with signal transduction, protein synthesis, cell division, cell growth, development, and aging.[28]

Human TMEM89 Motif Schematic[29][15][17][16]
Human TMEM89 N-myristylation Site Multiple Sequence Alignment[30][15]

Interactions

The human TMEM89 protein interacts with the proteins C4A, RBM15B, GOLGA6A, PFKFB4, DOCK3, MAPKAPK3, ZNF557, and ZBTB47.[31][32]

Homologs

Orthologs

Orthologs of TMEM89 are only found in mammals.[1] The only mammalian taxon that does not contain a TMEM89 ortholog is the monotremes.

Below is a table with information on some of the orthologs of human TMEM89. These orthologs were used to make the multiple sequence alignment and N-myristylation site alignment to the right.

TMEM89 Ortholog Table[33][34][35]
Genus and Species Common Name Taxon Date of Divergence (MYA) NCBI Accession Number Sequence Length (aa) % Identity % Similarity
Homo sapiens Humans Primate 0 NP_001008270.1 159 100 100
Castor canadensis American beaver Rodentia 87 XP_020018275.1 158 73.1 81.2
Urocitellus parryii Arctic ground squirrel Rodentia 87 XP_026239733.1 155 66.0 74.8
Orcinus orca Orca Artiodactyla 94 XP_004283952.1 159 71.9 80.0
Bos taurus Cow Artiodactyla 94 NP_001104538.1 159 63.5 73.5
Odobenus rosmarus divergens Pacific walrus Carnivora 94 XP_004399365.2 159 67.9 77.4
Canis lupus familiaris Dog Carnivora 94 XP_038283783.1 159 65.6 76.2
Talpa occidentalis Spanish mole Eulipotphyla 94 XP_037376292.1 162 66.7 75.3
Condylura cristata Star-nosed mole Eulipotphyla 94 XP_004676653.1 162 63.0 74.1
Pteropus alecto Black flying fox Chiroptera 94 XP_006909233.1 156 65.2 74.5
Desmodus rotundus Common vampire bat Chiroptera 94 XP_024421609.1 159 63.8 74.4
Ceratotherium simum simum Southern white rhinoceros Perissodactyla 94 XP_004419716.1 159 64.2 78.0
Equus caballus Horse Perissodactyla 94 XP_003363167.2 207 49.8 58.9
Manis javanica Malayan pangolin Pholidota 94 KAI5937412.1 158 53.8 67.5
Manis pentadactyla Chinese pangolin Pholidota 94 XP_036733472.1 158 53.1 66.0
Orycteropus afer afer Aardvark Tubulidentata 99 XP_007953489.1 160 68.9 77.0
Loxodonta africana African bush elephant Proboscidea 99 XP_003409726.1 160 68.8 79.4
Dasypus novemcinctus Nine-banded armadillo Cingulata 99 XP_004451990.1 157 67.5 75.0
Sarcophilus harrisii Tasmanian devil Dasyuromorphia 160 XP_031794457.1 168 41.0 52.2
Trichosurus vulpecula Common brushtail possum Diprotodontia 160 XP_036595517.1 168 40.8 51.4
Unrooted Phylogenetic Tree of Human TMEM89 Orthologs[33][36]

Conserved regions

Regions within the cytoplasmic and extracellular domains of the human TMEM89 protein seem to be the most conserved, as seen in figures on the right.[30][33] Some of these conserved amino acids are part of α-helices in the cytoplasmic and extracellular regions.[30][33]

Human TMEM89 Orthologs Multiple Sequence Alignment[30][33]

References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 "Database resources of the national center for biotechnology information". Nucleic Acids Research 50 (D1): D20–D26. January 2022. doi:10.1093/nar/gkab1112. PMID 34850941. 
  2. 2.0 2.1 2.2 2.3 2.4 "The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses". Current Protocols in Bioinformatics 54 (1): 1.30.1–1.30.33. June 2016. doi:10.1002/cpbi.5. PMID 27322403. 
  3. 3.0 3.1 "The Human Protein Atlas". https://www.proteinatlas.org/. 
  4. "Proteomics. Tissue-based map of the human proteome". Science 347 (6220): 1260419. January 2015. doi:10.1126/science.1260419. PMID 25613900. 
  5. "A Suite of Transgenic Driver and Reporter Mouse Lines with Enhanced Brain-Cell-Type Targeting and Functionality". Cell 174 (2): 465–480.e22. July 2018. doi:10.1016/j.cell.2018.06.035. PMID 30007418. 
  6. 6.0 6.1 "A single-cell type transcriptomics map of human tissues". Science Advances 7 (31): eabh2169. July 2021. doi:10.1126/sciadv.abh2169. PMID 34321199. Bibcode2021SciA....7.2169K. 
  7. "A novel source of cultured podocytes". PLOS ONE 8 (12): e81812. 12 December 2013. doi:10.1371/journal.pone.0081812. PMID 24349133. Bibcode2013PLoSO...881812D. 
  8. "A global genomic view of MIF knockdown-mediated cell cycle arrest". Cell Cycle 7 (11): 1678–1692. June 2008. doi:10.4161/cc.7.11.6011. PMID 18469521. 
  9. "Transcriptional and functional profiling of human embryonic stem cell-derived cardiomyocytes". PLOS ONE 3 (10): e3474. 22 October 2008. doi:10.1371/journal.pone.0003474. PMID 18941512. Bibcode2008PLoSO...3.3474C. 
  10. "Identification of plasma secreted phosphoprotein 1 as a novel biomarker for upper tract urothelial carcinomas". Biomedicine & Pharmacotherapy 113: 108744. May 2019. doi:10.1016/j.biopha.2019.108744. PMID 30844659. 
  11. "Development and Validation of a Gene Signature for Prediction of Relapse in Stage I Testicular Germ Cell Tumors". Frontiers in Oncology 10: 1147. 30 July 2020. doi:10.3389/fonc.2020.01147. PMID 32850325. 
  12. "Six-Frame Translation". https://www.bioline.com/media/calculator/01_13.html. 
  13. 13.0 13.1 "UniProt: the universal protein knowledgebase in 2021". Nucleic Acids Research 49 (D1): D480–D489. January 2021. doi:10.1093/nar/gkaa1100. PMID 33237286. 
  14. 14.0 14.1 14.2 14.3 14.4 14.5 "Methods and algorithms for statistical analysis of protein sequences". Proceedings of the National Academy of Sciences of the United States of America 89 (6): 2002–2006. March 1992. doi:10.1073/pnas.89.6.2002. PMID 1549558. Bibcode1992PNAS...89.2002B. 
  15. 15.0 15.1 15.2 15.3 "MyHits: improvements to an interactive resource for analyzing protein sequences". Nucleic Acids Research 35 (Web Server issue): W433–W437. July 2007. doi:10.1093/nar/gkm352. PMID 17545200. 
  16. 16.0 16.1 16.2 "Kinexus PhosphoNET". http://www.phosphonet.ca/. 
  17. 17.0 17.1 17.2 "The Eukaryotic Linear Motif resource: 2022 release". Nucleic Acids Research 50 (D1): D497–D508. January 2022. doi:10.1093/nar/gkab975. PMID 34718738. 
  18. "The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences". Electrophoresis 14 (10): 1023–1031. October 1993. doi:10.1002/elps.11501401163. PMID 8125050. 
  19. "pH-induced intracellular protein transport". Physical Biology 3 (2): 101–106. May 2006. doi:10.1088/1478-3975/3/2/002. PMID 16829696. Bibcode2006PhBio...3..101B. 
  20. "The relationships between the isoelectric point and: length of proteins, taxonomy and ecology of organisms". BMC Genomics 8 (1): 163. June 2007. doi:10.1186/1471-2164-8-163. PMID 17565672. 
  21. 21.0 21.1 21.2 "SOSUI: classification and secondary structure prediction system for membrane proteins". Bioinformatics 14 (4): 378–379. 1998-05-01. doi:10.1093/bioinformatics/14.4.378. PMID 9632836. 
  22. 22.0 22.1 "Protter: interactive protein feature visualization and integration with experimental proteomic data". Bioinformatics 30 (6): 884–886. March 2014. doi:10.1093/bioinformatics/btt607. PMID 24162465. 
  23. 23.0 23.1 23.2 23.3 23.4 23.5 23.6 "Highly accurate protein structure prediction with AlphaFold". Nature 596 (7873): 583–589. August 2021. doi:10.1038/s41586-021-03819-2. PMID 34265844. Bibcode2021Natur.596..583J. 
  24. 24.0 24.1 24.2 24.3 24.4 24.5 24.6 "I-TASSER server: new development for protein structure and function predictions". Nucleic Acids Research 43 (W1): W174–W181. July 2015. doi:10.1093/nar/gkv342. PMID 25883148. 
  25. 25.0 25.1 25.2 25.3 25.4 25.5 "Cn3D: sequence and structure views for Entrez". Trends in Biochemical Sciences 25 (6): 300–302. June 2000. doi:10.1016/S0968-0004(00)01561-9. PMID 10838572. 
  26. "Myristoylation: An Important Protein Modification in the Immune Response". Frontiers in Immunology 8: 751. 2017-06-30. doi:10.3389/fimmu.2017.00751. PMID 28713376. 
  27. "The Eukaryotic Linear Motif resource: 2022 release". Nucleic Acids Research 50 (D1): D497–D508. January 2022. doi:10.1093/nar/gkab975. PMID 34718738. 
  28. "The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review)". International Journal of Molecular Medicine 40 (2): 271–280. August 2017. doi:10.3892/ijmm.2017.3036. PMID 28656226. 
  29. "IBS: an illustrator for the presentation and visualization of biological sequences". Bioinformatics 31 (20): 3359–3361. October 2015. doi:10.1093/bioinformatics/btv362. PMID 26069263. 
  30. 30.0 30.1 30.2 30.3 "Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega". Molecular Systems Biology 7 (1): 539. October 2011. doi:10.1038/msb.2011.75. PMID 21988835. 
  31. "The BioPlex Network: A Systematic Exploration of the Human Interactome". Cell 162 (2): 425–440. July 2015. doi:10.1016/j.cell.2015.06.043. PMID 26186194. 
  32. "Association of Long Runs of Homozygosity With Alzheimer Disease Among African American Individuals". JAMA Neurology 72 (11): 1313–1323. November 2015. doi:10.1001/jamaneurol.2015.1700. PMID 26366463. 
  33. 33.0 33.1 33.2 33.3 33.4 Madden, Thomas L.; Tatusov, Roman L.; Zhang, Jinghui (1996) (in en), [9 Applications of network BLAST server], Methods in Enzymology, 266, Elsevier, pp. 131–141, doi:10.1016/s0076-6879(96)66011-x, ISBN 978-0-12-182167-8, PMID 8743682, https://linkinghub.elsevier.com/retrieve/pii/S007668799666011X, retrieved 2022-12-15 
  34. "TimeTree 5: An Expanded Resource for Species Divergence Times". Molecular Biology and Evolution 39 (8): msac174. August 2022. doi:10.1093/molbev/msac174. PMID 35932227. 
  35. "A general method applicable to the search for similarities in the amino acid sequence of two proteins". Journal of Molecular Biology 48 (3): 443–453. March 1970. doi:10.1016/0022-2836(70)90057-4. PMID 5420325. 
  36. "drawtree". https://evolution.genetics.washington.edu/phylip/doc/drawtree.html.