Bogdanov map
From HandWiki
Short description: Chaotic 2D map related to the Bogdanov–Takens bifurcation
In dynamical systems theory, the Bogdanov map is a chaotic 2D map related to the Bogdanov–Takens bifurcation. It is given by the transformation:
- [math]\displaystyle{ \begin{cases} x_{n+1} = x_n + y_{n+1}\\ y_{n+1} = y_n + \epsilon y_n + k x_n (x_n - 1) + \mu x_n y_n \end{cases} }[/math]
The Bogdanov map is named after Rifkat Bogdanov.
See also
References
- DK Arrowsmith, CM Place, An introduction to dynamical systems, Cambridge University Press, 1990.
- Arrowsmith, D. K.; Cartwright, J. H. E.; Lansbury, A. N.; and Place, C. M. "The Bogdanov Map: Bifurcations, Mode Locking, and Chaos in a Dissipative System." Int. J. Bifurcation Chaos 3, 803–842, 1993.
- Bogdanov, R. "Bifurcations of a Limit Cycle for a Family of Vector Fields on the Plane." Selecta Math. Soviet 1, 373–388, 1981.
External links
Original source: https://en.wikipedia.org/wiki/Bogdanov map.
Read more |