Chemistry:Binary compounds of silicon

From HandWiki
Short description: Any binary chemical compound containing just silicon and another chemical element
Experimental iron-silicon phase diagram

Binary compounds of silicon are binary chemical compounds containing silicon and one other chemical element.[1] Technically the term silicide is reserved for any compounds containing silicon bonded to a more electropositive element. Binary silicon compounds can be grouped into several classes. Saltlike silicides are formed with the electropositive s-block metals. Covalent silicides and silicon compounds occur with hydrogen and the elements in groups 10 to 17.

Transition metals form metallic silicides, with the exceptions of silver, gold and the group 12 elements. The general composition is MnSi or MSin with n ranging from 1 to 6 and M standing for metal. Examples are M5Si, M3Si (Cu, V, Cr, Mo, Mn, Fe, Pt, U), M2Si (Zr, Hf, Ta, Ir, Ru, Rh, Co, Ni, Ce), M3Si2 (Hf, Th, U), MSi (Ti, Zr, Hf, Fe, Ce, Th, Pu) and MSi2 (Ti, V, Nb, Ta, Cr, Mo, W, Re).

The Kopp–Neumann law applies; heat capacities are linear in the proportion of silicon: [math]\displaystyle{ C_p(\ce{M_xSi_y})=xC_p(\ce{M})+yC_p(\ce{Si}) }[/math]

As a general rule, nonstochiometry implies instability. These intermetallics are in general resistant to hydrolysis, brittle, and melt at a lower temperature than the corresponding carbides or borides. They are electrical conductors. However, some, such as CrSi2, Mg2Si, β-FeSi2 and MnSi1.7, are semiconductors. Since degenerate semiconductors exhibit some metallic properties, such as luster and electrical conductivity which decreases with temperature, some silicides classified as metals may be semiconductors.

Group 1

Silicides of group 1 elements are saltlike silicides, except for silane (SiH4) whose bonds to hydrogen are covalent. Higher silane homologues are disilane and trisilane. Polysilicon hydride is a two-dimensional polymer network.

Many cluster compounds of lithium silicides are known, such as Li13Si4, Li22Si5, Li7Si3 and Li12Si7.[2] Li4.4Si is prepared from silicon and lithium metal in high-energy Ball mill process.[3] Potential uses include electrodes in lithium batteries. Li12Si7 has a Zintl phase with planar Si56− rings. Li NMR spectroscopy suggests these rings are aromatic.[4]

Other group 1 elements also form clusters: sodium silicide can be represented by NaSi, NaSi2 and Na11Si36[5] and potassium silicide by K8Si46. Group 1 silicides are in general high melting, metallic grey, with moderate to poor electrical conductance and prepared by heating the elements. Superconducting properties have been reported for Ba8Si46.[6] Several silicon Zintl ions (Si4−4, Si4−9, Si2−5) are known with group 1 counterions.[7]

Group 2

Silicides of group 2 elements are also saltlike silicides except for beryllium whose phase diagram with silicon is a simple eutectic (1085 °C @ 60% by weight silicon).[8] Again there is variation in composition: magnesium silicide is represented by Mg2Si,[9] calcium silicide can be represented by Ca2Si, CaSi, CaSi2, Ca5Si3 and by Ca14Si19,[10] strontium silicide can be represented by Sr2Si, SrSi2 and Sr5Si3[11] and barium silicide can be represented by Ba2Si, BaSi2, Ba5Si3 and Ba3Si4.[12] Mg2Si, and its solid solutions with Mg2Ge and Mg2Sn, are good thermoelectric materials and their figure of merit values are comparable with those of established materials.

Transition and inner transition metals

The transition metals form a wide range of silicon intermetallics with at least one binary crystalline phase. Some exceptions exist. Gold forms a eutectic at 363 °C with 2.3% silicon by weight (18% atom percent) without mutual solubility in the solid state.[13] Silver forms another eutectic at 835 °C with 11% silicon by weight, again with negligible mutual solid state solubility. In group 12 all elements form a eutectic close to the metal melting point without mutual solid-state solubility: zinc at 419 °C and > 99 atom percent zinc and cadmium at 320 °C (< 99% Cd).

Commercially relevant intermetallics are group 6 molybdenum disilicide, a commercial ceramic mostly used as an heating element. Tungsten disilicide is also a commercially available ceramic with uses in microelectronics. Platinum silicide is a semiconductor material. Ferrosilicon is an iron alloy that also contains some calcium and aluminium.

MnSi, known as brownleeite, can be found in outer space. Several Mn silicides form a Nowotny phase. Nanowires based on silicon and manganese can be synthesised from Mn(CO)5SiCl3 forming nanowires based on Mn19Si33.[14] or grown on a silicon surface[15][16][17] MnSi1.73 was investigated as thermoelectric material[18] and as an optoelectronic thin film.[19] Single-crystal MnSi1.73 can form from a tin-lead melt[20]

In the frontiers of technological research, iron disilicide is becoming more and more relevant to optoelectronics, specially in its crystalline form β-FeSi2.[21][22] They are used as thin films or as nanoparticles, obtained by means of epitaxial growth on a silicon substrate.[23][24]

Atomic number Name Symbol Group Period Block Phases
21 Scandium Sc 3 4 d Sc5Si3, ScSi, Sc2Si3,[25][26][27][28]
22 Titanium Ti 4 4 d Ti5Si3, TiSi, TiSi2, TiSi3, Ti6Si4[25]
23 Vanadium V 5 4 d V3Si, V5Si3, V6Si5, VSi2, V6Si5[25][29]
24 Chromium Cr 6 4 d Cr3Si, Cr5Si3, CrSi, CrSi2[25][30]
25 Manganese Mn 7 4 d MnSi, Mn9Si2, Mn3Si, Mn5Si3, Mn11Si9[25]
26 Iron Fe 8 4 d
27 Cobalt Co 9 4 d CoSi, CoSi2, Co2Si, Co2Si, Co3Si[31][32]
28 Nickel Ni 10 4 d Ni3Si, Ni31Si12, Ni2Si, Ni3Si2, NiSi (Nickel monosilicide), NiSi2[25][33]
29 Copper Cu 11 4 d Cu17Si3, Cu56Si11,Cu5Si, Cu33Si7, Cu4Si, Cu19Si6,Cu3Si,Cu87Si13[25][34]
30 Zinc Zn 12 4 d eutectic[35]
39 Yttrium Y 3 4 d Y5Si3, Y5Si4, YSi, Y3Si5,[36][37] YSi1.4.[38]
40 Zirconium Zr 4 5 d Zr5Si3, Zr5Si4, ZrSi, ZrSi2,[25] Zr3Si2, Zr2Si, Zr3Si[39]
41 Niobium Nb 5 5 d Nb5Si3, Nb4Si[25]
42 Molybdenum Mo 6 5 d Mo3Si, Mo5Si3, MoSi2[25]
43 Technetium Tc 7 5 d Tc4Si7 (proposed)[40]
44 Ruthenium Ru 8 5 d Ru2Si, Ru4Si3, RuSi, Ru2Si3[41][42]
45 Rhodium Rh 9 5 d RhSi,[43] Rh2Si, Rh5Si3, Rh3Si2, Rh20Si13[44]
46 Palladium Pd 10 5 d Pd5Si, Pd9Si2, Pd3Si, Pd2Si, PdSi[45]
47 Silver Ag 11 5 d eutectic[46]
48 Cadmium Cd 12 5 d eutectic[47]
57 Lanthanum La 6 f La5Si3, La3Si2, La5Si4, LaSi, LaSi2[48]
58 Cerium Ce 6 f Ce5Si3, Ce3Si2, Ce5Si4, CeSi,[49] Ce3Si5, CeSi2[50]
59 Praseodymium Pr 6 f Pr5Si3, Pr3Si2, Pr5Si4, PrSi, PrSi2[51]
60 Neodymium Nd 6 f Nd5Si3, Nd5Si4, Nd5Si3,NdSi, Nd3Si4, Nd2Si3, NdSix[52]
61 Promethium Pm 6 f
62 Samarium Sm 6 f Sm5Si4, Sm5Si3, SmSi, Sm3Si5, SmSi2[53]
63 Europium Eu 6 f
64 Gadolinium Gd 6 f Gd5Si3, Gd5Si4, GdSi, GdSi2[54]
65 Terbium Tb 6 f Si2Tb (terbium silicide), SiTb, Si4Tb5, Si3Tb5[55]
66 Dysprosium Dy 6 f Dy5Si5, DySi, DySi2[56]
67 Holmium Ho 6 f Ho5Si3,Ho5Si4,HoSi,Ho4Si5,HoSi2[57]
68 Erbium Er 6 f Er5Si3, Er5Si4, ErSi, ErSi2[58]
69 Thulium Tm 6 f
70 Ytterbium Yb 6 f Si1.8Yb,Si5Yb3,Si4Yb3, SiYb, Si4Yb5, Si3Yb5[59]
71 Lutetium Lu 3 6 d Lu5Si3[60]
72 Hafnium Hf 4 6 d Hf2Si, Hf3Si2, HfSi, Hf5Si4, HfSi2[25][61]
73 Tantalum Ta 5 6 d Ta9Si2, Ta3Si, Ta5Si3[25]
74 Tungsten W 6 6 d W5Si3, WSi2[62]
75 Rhenium Re 7 6 d Re2Si, ReSi, ReSi1.8[63] Re5Si3[25]
76 Osmium Os 8 6 d OsSi, Os2Si3, OsSi2[64]
77 Iridium Ir 9 6 d IrSi, Ir4Si5, Ir3Si4, Ir3Si5, IrSi3. Ir2Si3, Ir4Si7, IrSi2[65][66]
78 Platinum Pt 10 6 d Pt25Si7, Pt17Si8, Pt6Si5, Pt5Si2, Pt3Si, Pt2Si, PtSi[67]
79 Gold Au 11 6 d Eutectic diagram at link[68]
80 Mercury Hg 12 6 d eutectic[69]
89 Actinium Ac 7 f
90 Thorium Th 7 f Th3Si2, ThSi, Th3Si5, and ThSi2−x[70]
91 Protactinium Pa 7 f
92 Uranium U 7 f U3Si, U3Si2, USi, U3Si5, USi2−x, USi2 and USi3[71]
93 Neptunium Np 7 f NpSi3, Np3Si2, and NpSi[72]
94 Plutonium Pu 7 f Pu5Si3, Pu3Si2, PuSi, Pu3Si5 and PuSi2[73]
95 Americium Am 7 f AmSi, AmSi2[74]
96 Curium Cm 7 f CmSi, Cm2Si3, CmSi2[75]
97 Berkelium Bk 7 f
98 Californium Cf 7 f
99 Einsteinium Es 7 f
100 Fermium Fm 7 f
101 Mendelevium Md 7 f
102 Nobelium No 7 f
103 Lawrencium Lr 3 7 d
104 Rutherfordium Rf 4 7 d
105 Dubnium Db 5 7 d
106 Seaborgium Sg 6 7 d
107 Bohrium Bh 7 7 d
108 Hassium Hs 8 7 d
109 Meitnerium Mt 9 7 d
110 Darmstadtium Ds 10 7 d
111 Roentgenium Rg 11 7 d
112 Copernicium Cn 12 7 d

Group 13

In group 13 boron (a metalloid) forms several binary crystalline silicon boride compounds: SiB3, SiB6, SiBn.[76] With aluminium, a post-transition metal, a eutectic is formed (577 °C @ 12.2 atom % Al) with maximum solubility of silicon in solid aluminium of 1.5%. Commercially relevant aluminium alloys containing silicon have at least element added.[77] Gallium, also a post-transition metal, forms a eutectic at 29 °C with 99.99% Ga without mutual solid-state solubility;[78] indium[79] and thallium[80] behave similarly.

Group 14

Silicon carbide (SiC) is widely used as a ceramic or example in car brakes and bulletproof vests. It is also used in semiconductor electronics. It is manufactured from silicon dioxide and carbon in an Acheson furnace between 1600 and 2500 °C. There are 250 known crystalline forms with alpha silicon carbide the most common. Silicon itself is an important semiconductor material used in microchips. It is produced commercially from silica and carbon at 1900 °C and crystallizes in a diamond cubic crystal structure. Germanium silicide forms a solid solution and is again a commercially used semiconductor material.[81] The tin–silicon phase diagram is a eutectic[82] and the lead–silicon phase diagram shows a monotectic transition and a small eutectic transition but no solid solubility.[83]

Group 15

Silicon nitride (Si3N4) is a ceramic with many commercial high-temperature applications such as engine parts. It can be synthesized from the elements at temperatures between 1300 and 1400 °C. Three different crystallographic forms exist. Other binary silicon nitrogen compounds have been proposed (SiN, Si2N3, Si3N)[84] and other SiN compounds have been investigated at cryogenic temperatures (SiN2, Si(N2)2, SiNNSi).[85] Silicon tetraazide is an unstable compound that easily detonates.

The phase diagram with phosphorus shows SiP and SiP2.[86] A reported silicon phosphide is Si12P5 (no practical applications),[87][88] formed by annealing an amorphous Si-P alloy.

The arsenic–silicon phase diagram measured at 40 Bar has two phases: SiAs and SiAs2.[89] The antimony–silicon system comprises a single eutectic close to the melting point of Sb.[90] The bismuth system is a monotectic.[91]

Group 16

In group 16 silicon dioxide is a very common compound that widely occurs as sand or quartz. SiO2 is tetrahedral with each silicon atom surrounded by 4 oxygen atoms. Numerous crystalline forms exist with the tetrahedra linked to form a polymeric chain. Examples are tridymite and cristobalite. A less common oxide is silicon monoxide that can be found in outer space. Unconfirmed reports exist for nonequilibrium Si2O, Si3O2, Si3O4, Si2O3 and Si3O5.[92] Silicon sulfide is also a chain compound. Cyclic SiS2 has been reported to exist in the gas phase.[93] The phase diagram of silicon with selenium has two phases: SiSe2 and SiSe.[94] Tellurium silicide is a semiconductor with formula TeSi2 or Te2Si3.[95]

Group 17

Binary silicon compounds in group 17 are stable compounds ranging from gaseous silicon fluoride (SiF4) to the liquids silicon chloride (SiCl4 and silicon bromide SiBr4) to the solid silicon iodide (SiI4). The molecular geometry in these compounds is tetrahedral and the bonding mode covalent. Other known stable fluorides in this group are Si2F6, Si3F8 (liquid) and polymeric solids known as polysilicon fluorides (SiF2)x and (SiF)x. The other halides form similar binary silicon compounds.[96]

The periodic table of the binary silicon compounds

SiH4 He
LiSi Be SiB3 SiC Si3N4 SiO2 SiF4 Ne
NaSi Mg2Si Al Si SiP SiS2 SiCl4 Ar
KSi CaSi2 ScSi TiSi V5Si3 Cr5Si3 MnSi FeSi CoSi NiSi Cu5Si Zn Ga Si1−xGex SiAs SiSe2 SiBr4 Kr
RbSi Sr2Si YSi ZrSi Nb5Si3 Mo5Si3 Tc RuSi RhSi PdSi Ag Cd In Sn Sb TeSi2 SiI4 Xe
CsSi Ba2Si LuSi HfSi Ta5Si3 W5Si3 ReSi2 OsSi IrSi PtSi Au Hg Tl Pb Bi Po At Rn
Fr Ra Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
LaSi CeSi PrSi NdSi Pm SmSi EuSi GdSi TbSi DySi HoSi ErSi Tm YbSi
Ac ThSi Pa USi NpSi PuSi AmSi CmSi Bk Cf Es Fm Md No
Binary compounds of silicon
Covalent silicon compounds metallic silicides.
Ionic silicides Do not exist
Eutectic / monotectic / solid solution Unknown / Not assessed

References

  1. Inorganic chemistry, Egon Wiberg, Nils Wiberg, Arnold Frederick Holleman
  2. Okamoto, H. (1990). "The Li-Si (Lithium-Silicon) system". Bulletin of Alloy Phase Diagrams (Springer Science and Business Media LLC) 11 (3): 306–312. doi:10.1007/bf03029305. ISSN 0197-0216. 
  3. Solid state ionics for batteries, Tsutomu Minami, Masahiro Tatsumisago
  4. Dupke, Sven; Langer, Thorsten; Pöttgen, Rainer; Winter, Martin; Eckert, Hellmut (2012). "Structural and dynamic characterization of Li12Si7 and Li12Ge7 using solid state NMR". Solid State Nuclear Magnetic Resonance (Elsevier BV) 42: 17–25. doi:10.1016/j.ssnmr.2011.09.002. ISSN 0926-2040. PMID 21996453. 
  5. Songster, J; Pelton, A.D (1992). "The na-si (sodium-silicon) system". Journal of Phase Equilibria (Springer Science and Business Media LLC) 13 (1): 67–69. doi:10.1007/bf02645381. ISSN 1054-9714. 
  6. Yamanaka, Shoji; Enishi, Eiji; Fukuoka, Hiroshi; Yasukawa, Masahiro (1999-12-17). "High-Pressure Synthesis of a New Silicon Clathrate Superconductor, Ba8Si46". Inorganic Chemistry (American Chemical Society (ACS)) 39 (1): 56–58. doi:10.1021/ic990778p. ISSN 0020-1669. PMID 11229033. 
  7. Scharfe, Sandra; Kraus, Florian; Stegmaier, Saskia; Schier, Annette; Fässler, Thomas F. (2011-03-31). "Zintl Ions, Cage Compounds, and Intermetalloid Clusters of Group 14 and Group 15 Elements". Angewandte Chemie International Edition (Wiley) 50 (16): 3630–3670. doi:10.1002/anie.201001630. ISSN 1433-7851. PMID 21455921. 
  8. Okamoto, H. (2008-12-06). "Be-Si (Beryllium-Silicon)". Journal of Phase Equilibria and Diffusion (Springer Science and Business Media LLC) 30 (1): 115. doi:10.1007/s11669-008-9433-6. ISSN 1547-7037. 
  9. Nayeb-Hashemi, A. A.; Clark, J. B. (1984). "The Mg−Si (Magnesium-Silicon) system". Bulletin of Alloy Phase Diagrams (Springer Science and Business Media LLC) 5 (6): 584–592. doi:10.1007/bf02868321. ISSN 0197-0216. 
  10. Currao, Antonio; Wengert, Steffen; Nesper, Reinhard; Curda, Jan; Hillebrecht, H. (1996). "Ca14Si19 - a Zintl Phase with a Novel Twodimensional Silicon Framework" (in de). Zeitschrift für anorganische und allgemeine Chemie (Wiley) 622 (3): 501–508. doi:10.1002/zaac.19966220319. ISSN 0044-2313. 
  11. Itkin, V. P.; Alcock, C. B. (1989). "The Si-Sr (Silicon-Strontium) system". Bulletin of Alloy Phase Diagrams (Springer Science and Business Media LLC) 10 (6): 630–634. doi:10.1007/bf02877630. ISSN 0197-0216. 
  12. Aydemir, Umut; Ormeci, Alim; Borrmann, Horst; Böhme, Bodo; Zürcher, Fabio et al. (2008). "The Metallic Zintl Phase Ba3Si4- Synthesis, Crystal Structure, Chemical Bonding, and Physical Properties". Zeitschrift für anorganische und allgemeine Chemie (Wiley) 634 (10): 1651–1661. doi:10.1002/zaac.200800116. ISSN 0044-2313. 
  13. Constitution of Binary Alloys, second edition, Max Hansen and Kurt Anderko, McGraw-Hill Book Co., (NY NY 1958) p. 232 and EG Heath, J. of Electro Control, 11, 1961, pp 13-15 as summarized in Constitution of Binary Alloys, First Supplement, Elliott, McGraw-Hill Book Inc., (NY NY 1965) p. 103
  14. Higgins, Jeremy M.; Schmitt, Andrew L.; Guzei, Ilia A.; Jin, Song (2008-11-05). "Higher Manganese Silicide Nanowires of Nowotny Chimney Ladder Phase". Journal of the American Chemical Society (American Chemical Society (ACS)) 130 (47): 16086–16094. doi:10.1021/ja8065122. ISSN 0002-7863. PMID 18983151. 
  15. Wang, Dan; Zou, Zhi-Qiang (2009-06-17). "Formation of manganese silicide nanowires on Si(111) surfaces by the reactive epitaxy method". Nanotechnology (IOP Publishing) 20 (27): 275607. doi:10.1088/0957-4484/20/27/275607. ISSN 0957-4484. PMID 19531857. Bibcode2009Nanot..20A5607W. 
  16. Krause, M. R.; Stollenwerk, A.; Licurse, M.; LaBella, V. P. (2006). "Ostwald ripening of manganese silicide islands on Si(001)". Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films (American Vacuum Society) 24 (4): 1480–1483. doi:10.1116/1.2167070. ISSN 0734-2101. Bibcode2006JVSTA..24.1480K. 
  17. Wang, Jinliang; Hirai, Masaaki; Kusaka, Masahiko; Iwami, Motohiro (1997). "Preparation of manganese silicide thin films by solid phase reaction". Applied Surface Science (Elsevier BV) 113-114: 53–56. doi:10.1016/s0169-4332(96)00823-9. ISSN 0169-4332. Bibcode1997ApSS..113...53W. 
  18. Itoh, Takashi; Yamada, Masataka (2009-02-27). "Synthesis of Thermoelectric Manganese Silicide by Mechanical Alloying and Pulse Discharge Sintering". Journal of Electronic Materials (Springer Science and Business Media LLC) 38 (7): 925–929. doi:10.1007/s11664-009-0697-3. ISSN 0361-5235. Bibcode2009JEMat..38..925I. 
  19. Mahan, John E. (2004). "The potential of higher manganese silicide as an optoelectronic thin film material". Thin Solid Films (Elsevier BV) 461 (1): 152–159. doi:10.1016/j.tsf.2004.02.090. ISSN 0040-6090. Bibcode2004TSF...461..152M. 
  20. Solomkin, F. Yu.; Zaitsev, V. K.; Kartenko, N. F.; Kolosova, A. S.; Samunin, A. Yu.; Isachenko, G. N. (2008). "Crystallization of highest manganese silicide MnSi1.71–1.75 from tin-lead solution-melt". Technical Physics (Pleiades Publishing Ltd) 53 (12): 1636–1637. doi:10.1134/s1063784208120190. ISSN 1063-7842. Bibcode2008JTePh..53.1636S. 
  21. Wetzig, Klaus; Schneider, Claus Michael (eds.). Metal based thin films for electronics.[yes|permanent dead link|dead link}}] Wiley-VCH, 2006 (2nd edition), p. 64. ISBN:3-527-40650-6
  22. A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1.5 μm. D. Leong, M. Harry, K. J. Reeson and K. P. Homewood. Nature 387, 686-688, 12 June 1997.
  23. Rizzi, A.; Rösen, B. N. E.; Freundt, D.; Dieker, Ch.; Lüth, H.; Gerthsen, D. (1995-06-15). "Heteroepitaxy of β-FeSi2on Si by gas-source MBE". Physical Review B (American Physical Society (APS)) 51 (24): 17780–17794. doi:10.1103/physrevb.51.17780. ISSN 0163-1829. PMID 9978811. Bibcode1995PhRvB..5117780R. 
  24. Mahan, John E.; Thanh, V. Le; Chevrier, J.; Berbezier, I.; Derrien, J.; Long, Robert G. (1993). "Surface electron‐diffraction patterns of β‐FeSi2 films epitaxially grown on silicon". Journal of Applied Physics (AIP Publishing) 74 (3): 1747–1761. doi:10.1063/1.354804. ISSN 0021-8979. Bibcode1993JAP....74.1747M. 
  25. 25.00 25.01 25.02 25.03 25.04 25.05 25.06 25.07 25.08 25.09 25.10 25.11 25.12 Schlesinger, Mark E. (1990-06-01). "Thermodynamics of solid transition-metal silicides". Chemical Reviews (American Chemical Society (ACS)) 90 (4): 607–628. doi:10.1021/cr00102a003. ISSN 0009-2665. 
  26. Kotroczo, V.; McColm, I.J. (1994). "Phases in rapidly cooled scandium-silicon samples". Journal of Alloys and Compounds (Elsevier BV) 203: 259–265. doi:10.1016/0925-8388(94)90744-7. ISSN 0925-8388. 
  27. Okamoto, H. (1995). "Comment on Sc-Si (Scandium-Silicon)". Journal of Phase Equilibria (Springer Science and Business Media LLC) 16 (5): 477. doi:10.1007/bf02645365. ISSN 1054-9714. 
  28. Okamoto, H. (1992). "Sc-Si (Scandium-Silicon)". Journal of Phase Equilibria (Springer Science and Business Media LLC) 13 (6): 679–681. doi:10.1007/bf02667229. ISSN 1054-9714. 
  29. Smith, J. F. (1985). "The Si−V (Silicon-Vanadium) system: Addendum". Bulletin of Alloy Phase Diagrams (Springer Science and Business Media LLC) 6 (3): 266–271. doi:10.1007/bf02880413. ISSN 0197-0216. 
  30. Gokhale, A. B.; Abbaschian, G. J. (1987). "The Cr−Si (Chromium-Silicon) system". Journal of Phase Equilibria (Springer Science and Business Media LLC) 8 (5): 474–484. doi:10.1007/bf02893156. ISSN 1054-9714. 
  31. Walter, Dirk; Karyasa, I W. (2005). "Synthesis and Characterization of Cobalt Monosilicide (CoSi) with CsCl Structure Stabilized by a β-SiC Matrix" (in de). Zeitschrift für anorganische und allgemeine Chemie (Wiley) 631 (6–7): 1285–1288. doi:10.1002/zaac.200500050. ISSN 0044-2313. 
  32. Ishida, K; Nishizawa, T; Schlesinger, M. E (1991). "The Co-Si (Cobalt-Silicon) system". Journal of Phase Equilibria (Springer Science and Business Media LLC) 12 (5): 578–586. doi:10.1007/bf02645074. ISSN 1054-9714. 
  33. Nash, P.; Nash, A. (1987). "The Ni−Si (Nickel-Silicon) system". Bulletin of Alloy Phase Diagrams (Springer Science and Business Media LLC) 8 (1): 6–14. doi:10.1007/bf02868885. ISSN 0197-0216. 
  34. Okamoto, H. (2002). "Cu-Si (copper-silicon)". Journal of Phase Equilibria (Springer Science and Business Media LLC) 23 (3): 281–282. doi:10.1361/105497102770331857. ISSN 1054-9714. 
  35. Olesinski, R. W.; Abbaschian, G. J. (1985). "The Si-Zn (Silicon-Zinc) system". Bulletin of Alloy Phase Diagrams (Springer Science and Business Media LLC) 6 (6): 545–548. doi:10.1007/bf02887156. ISSN 0197-0216. 
  36. Gokhale, A. B.; Abbaschian, G. J. (1986). "The Si−Y (Silicon-Yttrium) system". Bulletin of Alloy Phase Diagrams (Springer Science and Business Media LLC) 7 (5): 485–489. doi:10.1007/bf02867814. ISSN 0197-0216. 
  37. Pöttgen, Rainer; Hoffmann, Rolf-Dieter; Kußmann, Dirk (1998). "The Binary Silicides Eu5Si3 and Yb3Si5 - Synthesis, Crystal Structure, and Chemical Bonding" (in de). Zeitschrift für anorganische und allgemeine Chemie (Wiley) 624 (6): 945–951. doi:10.1002/(sici)1521-3749(199806)624:6<945::aid-zaac945>3.0.co;2-d. ISSN 0044-2313. 
  38. Kubata, Christof; Krumeich, Frank; Wörle, Michael; Nesper, Reinhard (2005). "The Real Structure of YbSi1.4 - Commensurately and Incommensurately Modulated Silicon Substructures" (in de). Zeitschrift für anorganische und allgemeine Chemie (Wiley) 631 (2–3): 546–555. doi:10.1002/zaac.200400423. ISSN 0044-2313. 
  39. Okamoto, H. (1990). "The Si-Zr (Silicon-Zirconium) system". Journal of Phase Equilibria (Springer Science and Business Media LLC) 11 (5): 513–519. doi:10.1007/bf02898272. ISSN 1054-9714. 
  40. Grin, Juri N. (1986). "Ein Aufbaumodell für "Chimney-Ladder"-Strukturen" (in de). Monatshefte für Chemie Chemical Monthly (Springer Science and Business Media LLC) 117 (8–9): 921–932. doi:10.1007/bf00811261. ISSN 0026-9247. 
  41. Perring, L.; Bussy, F.; Gachon, J.C.; Feschotte, P. (1999). "The Ruthenium–Silicon system". Journal of Alloys and Compounds (Elsevier BV) 284 (1–2): 198–205. doi:10.1016/s0925-8388(98)00911-6. ISSN 0925-8388. 
  42. Okamoto, H. (2000). "Ru-Si (Ruthenium-Silicon)". Journal of Phase Equilibria (Springer Science and Business Media LLC) 21 (5): 498. doi:10.1361/105497100770339806. ISSN 1054-9714. 
  43. Geller, S.; Wood, E. A. (1954-05-20). "The crystal structure of rhodium silicide, RhSi". Acta Crystallographica (International Union of Crystallography (IUCr)) 7 (5): 441–443. doi:10.1107/s0365110x54001314. ISSN 0365-110X. Bibcode1954AcCry...7..441G. 
  44. Schlesinger, M.E (1992). "The rh-si (rhodium-silicon) system". Journal of Phase Equilibria (Springer Science and Business Media LLC) 13 (1): 54–59. doi:10.1007/bf02645377. ISSN 1054-9714. 
  45. Baxi, H. C.; Massalski, T. B. (1991). "The pdsi (palladiumsilicon) system". Journal of Phase Equilibria (Springer Science and Business Media LLC) 12 (3): 349–356. doi:10.1007/bf02649925. ISSN 1054-9714. 
  46. Olesinski, R. W.; Gokhale, A. B.; Abbaschian, G. J. (1989). "The Ag-Si (Silver-Silicon) system". Bulletin of Alloy Phase Diagrams (Springer Science and Business Media LLC) 10 (6): 635–640. doi:10.1007/bf02877631. ISSN 0197-0216. 
  47. Olesinski, R. W.; Abbaschian, G. J. (1985). "The Cd-Si (Cadmium-Silicon) system". Bulletin of Alloy Phase Diagrams (Springer Science and Business Media LLC) 6 (6): 534–536. doi:10.1007/bf02887152. ISSN 0197-0216. 
  48. Okamoto, H. (2007-10-10). "La-Si (Lanthanum-Silicon)". Journal of Phase Equilibria and Diffusion (Springer Science and Business Media LLC) 28 (6): 585. doi:10.1007/s11669-007-9204-9. ISSN 1547-7037. 
  49. Bulanova, M.V.; Zheltov, P.N.; Meleshevich, K.A.; Saltykov, P.A.; Effenberg, G. (2002). "Cerium–silicon system". Journal of Alloys and Compounds (Elsevier BV) 345 (1–2): 110–115. doi:10.1016/s0925-8388(02)00409-7. ISSN 0925-8388. 
  50. Munitz, A.; Gokhale, A. B.; Abbaschian, G. J. (1989). "The Ce-Si (Cerium-Silicon) system". Bulletin of Alloy Phase Diagrams (Springer Science and Business Media LLC) 10 (1): 73–78. doi:10.1007/bf02882179. ISSN 0197-0216. 
  51. Gorbachuk, N. P.; Bolgar, A. S.; Blinder, A. V. (1997). "Thermodynamic properties of praseodymium silicides in the temperature range 298.15-2257 K". Powder Metallurgy and Metal Ceramics (Springer Science and Business Media LLC) 36 (9–10): 498–501. doi:10.1007/bf02680501. ISSN 1068-1302. 
  52. Gokhale, A. B.; Munitz, A.; Abbaschian, G. J. (1989). "The Nd-Si (Neodymium-Silicon) system". Bulletin of Alloy Phase Diagrams (Springer Science and Business Media LLC) 10 (3): 246–251. doi:10.1007/bf02877504. ISSN 0197-0216. 
  53. Gokhale, A. B.; Abbaschian, G. J. (1988). "The Si-Sm (Silicon-Samarium) system". Bulletin of Alloy Phase Diagrams (Springer Science and Business Media LLC) 9 (5): 582–585. doi:10.1007/bf02881960. ISSN 0197-0216. 
  54. Gokhale, A. B.; Abbaschian, G. J. (1988). "The Gd−Si (Gadolinium-Silicon) system". Bulletin of Alloy Phase Diagrams (Springer Science and Business Media LLC) 9 (5): 574–578. doi:10.1007/bf02881958. ISSN 0197-0216. 
  55. Okamoto, H. (2000). "Si-Tb (Silicon-Terbium)". Journal of Phase Equilibria (Springer Science and Business Media LLC) 21 (5): 500. doi:10.1361/105497100770339824. ISSN 1054-9714. 
  56. Gorbachuk, Nikolai P.; Bolgar, Alexander S. (2002). "The Enthalpies of DySi2 and HoSi1.67 at 298.15-2007 K". Powder Metallurgy and Metal Ceramics (Springer Science and Business Media LLC) 41 (3/4): 173–176. doi:10.1023/a:1019891128273. ISSN 1068-1302. 
  57. Okamoto, H. (1996). "Ho-Si (holmium-silicon)". Journal of Phase Equilibria (Springer Science and Business Media LLC) 17 (4): 370–371. doi:10.1007/bf02665570. ISSN 1054-9714. 
  58. Okamoto, H. (1997). "Er-Si (erbium-silicon)". Journal of Phase Equilibria (Springer Science and Business Media LLC) 18 (4): 403. doi:10.1007/s11669-997-0073-z. ISSN 1054-9714. 
  59. Okamoto, H. (2003). "Si-Yb (Silicon-Ytterbium)". Journal of Phase Equilibria (Springer Science and Business Media LLC) 24 (6): 583. doi:10.1361/105497103772084787. ISSN 1054-9714. 
  60. Topor, L.; Kleppa, O.J. (1990). "Standard enthalpies of formation of Me5Si3 (Me - Y, Lu, Zr) and of Hf3Si2". Journal of the Less Common Metals (Elsevier BV) 167 (1): 91–99. doi:10.1016/0022-5088(90)90292-r. ISSN 0022-5088. 
  61. Gokhale, A. B.; Abbaschian, G. J. (1989). "The Hf-Si (hafnium-silicon) system". Bulletin of Alloy Phase Diagrams (Springer Science and Business Media LLC) 10 (4): 390–393. doi:10.1007/bf02877595. ISSN 0197-0216. 
  62. Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds Lassner, Erik, Schubert, Wolf-Dieter 1999
  63. Gokhale, A. B.; Abbaschian, R. (1996). "The Re-Si system (rhenium-silicon)". Journal of Phase Equilibria (Springer Science and Business Media LLC) 17 (5): 451–454. doi:10.1007/bf02667640. ISSN 1054-9714. 
  64. Okamoto, H. (2007-06-07). "Os-Si (Osmium-Silicon)". Journal of Phase Equilibria and Diffusion (Springer Science and Business Media LLC) 28 (4): 410. doi:10.1007/s11669-007-9121-y. ISSN 1547-7037. 
  65. Allevato, C.E.; Vining, Cronin B. (1993). "Phase diagram and electrical behavior of silicon-rich iridium silicide compounds". Journal of Alloys and Compounds (Elsevier BV) 200 (1–2): 99–105. doi:10.1016/0925-8388(93)90478-6. ISSN 0925-8388. 
  66. Jeitschko, W.; Parthé, E. (1967-03-10). "The crystal structure of Rh17Ga22, an example of a new kind of electron compound". Acta Crystallographica (International Union of Crystallography (IUCr)) 22 (3): 417–430. doi:10.1107/s0365110x67000799. ISSN 0365-110X. Bibcode1967AcCry..22..417J. 
  67. Okamoto, H. (1995). "Pt-Si (Platinum-Silicon)". Journal of Phase Equilibria (Springer Science and Business Media LLC) 16 (3): 286–287. doi:10.1007/bf02667320. ISSN 1054-9714. 
  68. Okamoto, H.; Massalski, T. B. (1983). "The Au−Si (Gold-Silicon) system". Bulletin of Alloy Phase Diagrams (Springer Science and Business Media LLC) 4 (2): 190–198. doi:10.1007/bf02884878. ISSN 0197-0216. 
  69. Guminski, C. (2001). "The Hg-Si system (mercury-silicon)". Journal of Phase Equilibria (Springer Science and Business Media LLC) 22 (6): 682–683. doi:10.1007/s11669-001-0041-y. ISSN 1054-9714. 
  70. as summarized in Constitution of Binary Alloys, Second Supplement, Francis A. Shunk, McGraw-Hill Book Inc., (NY NY 1969) p. 681-82.
  71. http://www.rertr.anl.gov/Web1999/PDF/18suripto.pdf [bare URL PDF]
  72. Boulet, Pascal; Bouëxière, Daniel; Rebizant, Jean; Wastin, Franck (2003). "Structural chemistry of the neptunium–silicon binary system". Journal of Alloys and Compounds (Elsevier BV) 349 (1–2): 172–179. doi:10.1016/s0925-8388(02)00918-0. ISSN 0925-8388. 
  73. Land, C.C.; Johnson, K.A.; Ellinger, F.H. (1965). "The plutonium-silicon system". Journal of Nuclear Materials (Elsevier BV) 15 (1): 23–32. doi:10.1016/0022-3115(65)90105-4. ISSN 0022-3115. Bibcode1965JNuM...15...23L. https://digital.library.unt.edu/ark:/67531/metadc1032796/. 
  74. Weigel, F.; Wittmann, F.D.; Marquart, R. (1977). "Americium monosilicide and "disilicide"". Journal of the Less Common Metals (Elsevier BV) 56 (1): 47–53. doi:10.1016/0022-5088(77)90217-x. ISSN 0022-5088. 
  75. Weigel, F.; Marquart, R. (1983). "Preparation and properties of some curium silicides". Journal of the Less Common Metals (Elsevier BV) 90 (2): 283–290. doi:10.1016/0022-5088(83)90077-2. ISSN 0022-5088. 
  76. Olesinski, R. W.; Abbaschian, G. J. (1984). "The B−Si (Boron-Silicon) system". Bulletin of Alloy Phase Diagrams (Springer Science and Business Media LLC) 5 (5): 478–484. doi:10.1007/bf02872900. ISSN 0197-0216. 
  77. Murray, J. L.; McAlister, A. J. (1984). "The Al-Si (Aluminum-Silicon) system". Bulletin of Alloy Phase Diagrams (Springer Science and Business Media LLC) 5 (1): 74–84. doi:10.1007/bf02868729. ISSN 0197-0216. 
  78. Olesinski, R. W.; Kanani, N.; Abbaschian, G. J. (1985). "The Ga−Si (Gallium-Silicon) system". Bulletin of Alloy Phase Diagrams (Springer Science and Business Media LLC) 6 (4): 362–364. doi:10.1007/bf02880523. ISSN 0197-0216. 
  79. Olesinski, R. W.; Kanani, N.; Abbaschian, G. J. (1985). "The In−Si (Indium-Silicon) system". Bulletin of Alloy Phase Diagrams (Springer Science and Business Media LLC) 6 (2): 128–130. doi:10.1007/bf02869223. ISSN 0197-0216. 
  80. Olesinski, R. W.; Abbaschian, G. J. (1985). "The Si-Zn (Silicon-Thallium) system". Bulletin of Alloy Phase Diagrams (Springer Science and Business Media LLC) 6 (6): 543–544. doi:10.1007/bf02887155. ISSN 0197-0216. 
  81. Olesinski, R. W.; Abbaschian, G. J. (1984). "The Ge−Si (Germanium-Silicon) system". Bulletin of Alloy Phase Diagrams (Springer Science and Business Media LLC) 5 (2): 180–183. doi:10.1007/bf02868957. ISSN 0197-0216. 
  82. Olesinski, R. W.; Abbaschian, G. J. (1984). "The Si−Sn (Silicon−Tin) system". Bulletin of Alloy Phase Diagrams (Springer Science and Business Media LLC) 5 (3): 273–276. doi:10.1007/bf02868552. ISSN 0197-0216. 
  83. Olesinski, R. W.; Abbaschian, G. J. (1984). "The Pb−Si (Lead−Silicon) system". Bulletin of Alloy Phase Diagrams (Springer Science and Business Media LLC) 5 (3): 271–273. doi:10.1007/bf02868551. ISSN 0197-0216. 
  84. Carlson, O. N. (1990). "The N-Si (Nitrogen-Silicon) system". Bulletin of Alloy Phase Diagrams (Springer Science and Business Media LLC) 11 (6): 569–573. doi:10.1007/bf02841719. ISSN 0197-0216. 
  85. Maier, Günther; Reisenauer, Hans Peter; Glatthaar, Jörg (2000-10-21). "Reactions of Silicon Atoms with Nitrogen: A Combined Matrix Spectroscopic and Density Functional Theory Study1". Organometallics (American Chemical Society (ACS)) 19 (23): 4775–4783. doi:10.1021/om000234r. ISSN 0276-7333. 
  86. Olesinski, R. W.; Kanani, N.; Abbaschian, G. J. (1985). "The P−Si (Phosphorus-Silicon) system". Bulletin of Alloy Phase Diagrams (Springer Science and Business Media LLC) 6 (2): 130–133. doi:10.1007/bf02869224. ISSN 0197-0216. 
  87. Carlsson, J. R. A.; Madsen, L. D.; Johansson, M. P.; Hultman, L.; Li, X.-H.; Hentzell, H. T. G.; Wallenberg, L. R. (1997). "A new silicon phosphide, Si12P5: Formation conditions, structure, and properties". Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films (American Vacuum Society) 15 (2): 394–401. doi:10.1116/1.580497. ISSN 0734-2101. Bibcode1997JVSTA..15..394C. 
  88. Huang, M.; Feng, Y.P. (2004). "Further study on structural and electronic properties of silicon phosphide compounds with 3:4 stoichiometry". Computational Materials Science (Elsevier BV) 30 (3–4): 371–375. doi:10.1016/j.commatsci.2004.02.031. ISSN 0927-0256. 
  89. Olesinski, R. W.; Abbaschian, G. J. (1985). "The As−Si (Arsenic-Silicon) system". Bulletin of Alloy Phase Diagrams (Springer Science and Business Media LLC) 6 (3): 254–258. doi:10.1007/bf02880410. ISSN 0197-0216. 
  90. Olesinski, R. W.; Abbaschian, G. J. (1985). "The Sb-Si (Antimony-Silicon) system". Bulletin of Alloy Phase Diagrams (Springer Science and Business Media LLC) 6 (5): 445–448. doi:10.1007/bf02869508. ISSN 0197-0216. 
  91. Olesinski, R. W.; Abbaschian, G. J. (1985). "The Bi−Si (Bismuth-Silicon) system". Bulletin of Alloy Phase Diagrams (Springer Science and Business Media LLC) 6 (4): 359–361. doi:10.1007/bf02880522. ISSN 0197-0216. 
  92. Wrledt, H. A. (1990). "The O-Si (Oxygen-Silicon) system". Bulletin of Alloy Phase Diagrams (Springer Science and Business Media LLC) 11 (1): 43–61. doi:10.1007/bf02841583. ISSN 0197-0216. 
  93. Mück, Leonie Anna; Lattanzi, Valerio; Thorwirth, Sven; McCarthy, Michael C.; Gauss, Jürgen (2012-02-28). "Cyclic SiS2: A New Perspective on the Walsh Rules". Angewandte Chemie International Edition (Wiley) 51 (15): 3695–3698. doi:10.1002/anie.201108982. ISSN 1433-7851. PMID 22374622. 
  94. Okamoto, H. (2000). "Se-Si (Selenium-Silicon)". Journal of Phase Equilibria (Springer Science and Business Media LLC) 21 (5): 499. doi:10.1361/105497100770339815. ISSN 1054-9714. 
  95. Davey, T. G.; Baker, E. H. (1980). "A note on the Si-Te phase diagram". Journal of Materials Science (Springer Science and Business Media LLC) 15 (6): 1601–1602. doi:10.1007/bf00752149. ISSN 0022-2461. Bibcode1980JMatS..15.1601D. 
  96. Inorganic chemistry, Egon Wiberg, Nils Wiberg, Arnold Frederick Holleman 2001