From HandWiki
Terbium, 65Tb
Pronunciation/ˈtɜːrbiəm/ (TUR-bee-əm)
Appearancesilvery white
Standard atomic weight Ar, std(Tb)158.925354(8)[1]
Terbium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson


Atomic number (Z)65
Groupgroup n/a
Periodperiod 6
Block  f-block
Element category  f-block
Electron configuration[Xe] 4f9 6s2
Electrons per shell2, 8, 18, 27, 8, 2
Physical properties
Phase at STPsolid
Melting point1629 K ​(1356 °C, ​2473 °F)
Boiling point3396 K ​(3123 °C, ​5653 °F)
Density (near r.t.)8.23 g/cm3
when liquid (at m.p.)7.65 g/cm3
Heat of fusion10.15 kJ/mol
Heat of vaporization391 kJ/mol
Molar heat capacity28.91 J/(mol·K)
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 1789 1979 (2201) (2505) (2913) (3491)
Atomic properties
Oxidation states0,[2] +1, +2, +3, +4 (a weakly basic oxide)
ElectronegativityPauling scale: 1.2 (?)
Ionization energies
  • 1st: 565.8 kJ/mol
  • 2nd: 1110 kJ/mol
  • 3rd: 2114 kJ/mol
Atomic radiusempirical: 177 pm
Covalent radius194±5 pm
Color lines in a spectral range
Spectral lines of terbium
Other properties
Natural occurrenceprimordial
Crystal structurehexagonal close-packed (hcp)
Hexagonal close packed crystal structure for terbium
Speed of sound thin rod2620 m/s (at 20 °C)
Thermal expansionat r.t. α, poly: 10.3 µm/(m·K)
Thermal conductivity11.1 W/(m·K)
Electrical resistivityα, poly: 1.150 µΩ·m (at r.t.)
Magnetic orderingparamagnetic at 300 K
Magnetic susceptibility+146,000·10−6 cm3/mol (273 K)[3]
Young's modulusα form: 55.7 GPa
Shear modulusα form: 22.1 GPa
Bulk modulusα form: 38.7 GPa
Poisson ratioα form: 0.261
Vickers hardness450–865 MPa
Brinell hardness675–1200 MPa
CAS Number7440-27-9
Namingafter Ytterby (Sweden), where it was mined
Discovery and first isolationCarl Gustaf Mosander (1843)
Main isotopes of terbium
Iso­tope Abun­dance Physics:Half-life (t1/2) Decay mode Pro­duct
157Tb syn 71 y ε 157Gd
158Tb syn 180 y ε 158Gd
β 158Dy
159Tb 100% stable
Category Category: Terbium
view · talk · edit | references
data m.p. cat
in calc from C diff report ref
C 1356
K 1629 1629 0
F 2473 2473 0
max precision 0

input C: 1356, K: 1629, F: 2473
data b.p. cat
in calc from C diff report ref
C 3123
K 3396 3396 0
F 5653 5653 0
max precision 0

input C: 3123, K: 3396, F: 5653

Terbium is a chemical element; it has symbol Tb and atomic number 65. It is a silvery-white, rare earth metal that is malleable, and ductile. The ninth member of the lanthanide series, terbium is a fairly electropositive metal that reacts with water, evolving hydrogen gas. Terbium is never found in nature as a free element, but it is contained in many minerals, including cerite, gadolinite, monazite, xenotime and euxenite.

Swedish chemist Carl Gustaf Mosander discovered terbium as a chemical element in 1843. He detected it as an impurity in yttrium oxide, Y
. Yttrium and terbium, as well as erbium and ytterbium, are named after the village of Ytterby in Sweden. Terbium was not isolated in pure form until the advent of ion exchange techniques.

Terbium is used to dope calcium fluoride, calcium tungstate and strontium molybdate in solid-state devices, and as a crystal stabilizer of fuel cells that operate at elevated temperatures. As a component of Terfenol-D (an alloy that expands and contracts when exposed to magnetic fields more than any other alloy), terbium is of use in actuators, in naval sonar systems and in sensors.

Most of the world's terbium supply is used in green phosphors. Terbium oxide is used in fluorescent lamps and television and monitor cathode-ray tubes (CRTs). Terbium green phosphors are combined with divalent europium blue phosphors and trivalent europium red phosphors to provide trichromatic lighting technology, a high-efficiency white light used for standard illumination in indoor lighting.


Physical properties

Terbium is a silvery-white rare earth metal that is malleable, ductile and soft enough to be cut with a knife.[4] It is relatively stable in air compared to the earlier, more reactive lanthanides in the first half of the lanthanide series.[5] Terbium exists in two crystal allotropes with a transformation temperature of 1289 °C between them.[4] The 65 electrons of a terbium atom are arranged in the electron configuration [Xe]4f96s2. The eleven 4f and 6s electrons are valence. Only three electrons can be removed before the nuclear charge becomes too great to allow further ionization, but in the case of terbium, the stability of the half-filled [Xe]4f7 configuration allows further ionization of a fourth electron in the presence of very strong oxidizing agents such as fluorine gas.[4]

The terbium(III) cation is brilliantly fluorescent, in a bright lemon-yellow color that is the result of a strong green emission line in combination with other lines in the orange and red. The yttrofluorite variety of the mineral fluorite owes its creamy-yellow fluorescence in part to terbium. Terbium easily oxidizes, and is therefore used in its elemental form specifically for research. Single terbium atoms have been isolated by implanting them into fullerene molecules.[6]

Terbium has a simple ferromagnetic ordering at temperatures below 219 K. Above 219 K, it turns into a helical antiferromagnetic state in which all of the atomic moments in a particular basal plane layer are parallel, and oriented at a fixed angle to the moments of adjacent layers. This unusual antiferromagnetism transforms into a disordered paramagnetic state at 230 K.[7]

Chemical properties

Terbium metal is an electropositive element and oxidizes in the presence of most acids (such as sulfuric acid), all of the halogens, and even water.[8]

2 Tb (s) + 3 H
→ 2 Tb3+ + 3 SO2−
+ 3 H
2 Tb + 3 X
→ 2 TbX
(X = F, Cl, Br, I)
2 Tb (s) + 6 H
O → 2 Tb(OH)
+ 3 H

Terbium also oxidizes readily in air to form a mixed terbium(III,IV) oxide:[8]

8 Tb + 7 O
→ 2 Tb

The most common oxidation state of terbium is +3 (trivalent), such as TbCl3. In the solid state, tetravalent terbium is also known, in compounds such as TbO
and TbF
.[9] In solution, terbium typically forms trivalent species, but can be oxidized to the tetravalent state with ozone in highly basic aqueous conditions.[10]

The coordination and organometallic chemistry of terbium is similar to other lanthanides. In aqueous conditions, terbium can be coordinated by nine water molecules, which are arranged in a tricapped trigonal prismatic molecular geometry. Complexes of terbium with lower coordination number are also known, typically with bulky ligands like bis(trimethyl-silylamide), which forms the three-coordinate Tb[N(SiMe

Most coordination and organometallic complexes contain terbium in the trivalent oxidation state. Divalent (Tb2+) complexes are also known, usually with bulky cyclopentadienyl-type ligands.[11][12][13] A few coordination compounds containing terbium in its tetravalent state are also known.[14][15][16]

Oxidation states

Like most rare-earth elements and lanthanides, terbium is usually found in the +3 oxidation state. Like cerium and praseodymium, terbium can also form a +4 oxidation state, although it is unstable in water.[17] However, it is possible for terbium to also be found in the 0, +1 and +2 oxidation states.


Terbium sulfate, Tb
(top), fluoresces green under ultraviolet light (bottom)

Terbium combines with nitrogen, carbon, sulfur, phosphorus, boron, selenium, silicon and arsenic at elevated temperatures, forming various binary compounds such as TbH
, TbH
, TbB
, Tb
, TbSe, TbTe and TbN.[18] In those compounds, Tb mostly exhibits the oxidation states +3 and sometimes +2. Terbium(II) halides are obtained by annealing Tb(III) halides in presence of metallic Tb in tantalum containers. Terbium also forms sesquichloride Tb
, which can be further reduced to TbCl by annealing at 800 °C. This terbium(I) chloride forms platelets with layered graphite-like structure.[19]

Terbium(IV) fluoride is the only halide that tetravalent terbium can form, and has strong oxidizing properties. It is also a strong fluorinating agent, emitting relatively pure atomic fluorine when heated, rather than the mixture of fluoride vapors emitted from cobalt(III) fluoride or cerium(IV) fluoride.[20] It can be obtained by reacting terbium(III) chloride or terbium(III) fluoride with fluorine gas at 320 °C:[21]

2 TbF3 + F2 → 2 TbF4

When TbF4 and CsF is mixed in a stoichiometric ratio, in a fluorine gas atmosphere, CsTbF5 is obtained. It is an orthorhombic crystal, with space group Cmca, with a layered structure composed of [TbF8]4− and 11-coordinated Cs+.[22] The compound BaTbF6 can be prepared in a similar method. It is an orthorhombic crystal, with space group Cmma. The compound [TbF8]4− also exists.[23]

Other compounds include


Main page: Physics:Isotopes of terbium

Naturally occurring terbium is composed of its only stable isotope, terbium-159; the element is thus mononuclidic and monoisotopic. Thirty-six radioisotopes have been characterized, with the heaviest being terbium-171 (with an atomic mass of 170.95330(86) u) and lightest being terbium-135 (exact mass unknown).[24] The most stable synthetic radioisotopes of terbium are terbium-158, with a half-life of 180 years, and terbium-157, with a half-life of 71 years. All of the remaining radioactive isotopes have half-lives that are much less than a quarter of a year, and the majority of these have half-lives that are less than half a minute.[24] The primary decay mode before the most abundant stable isotope, 159Tb, is electron capture, which results in production of gadolinium isotopes, and the primary mode after is beta minus decay, resulting in dysprosium isotopes.[24]

The element also has 27 nuclear isomers, with masses of 141–154, 156, and 158 (not every mass number corresponds to only one isomer). The most stable of them are terbium-156m, with a half-life of 24.4 hours, and terbium-156m2, with a half-life of 22.7 hours; this is longer than half-lives of most ground states of radioactive terbium isotopes, except those with mass numbers 155–161.[24]

Terbium-149, with a half-life of 4.1 hours, is a promising candidate in targeted alpha therapy and positron emission tomography.[25][26]


Carl Gustaf Mosander, the scientist who discovered terbium, lanthanum and erbium.

Swedish chemist Carl Gustaf Mosander discovered terbium in 1843. He detected it as an impurity in yttrium oxide, Y
. Yttrium is named after the village of Ytterby in Sweden. Terbium was not isolated in pure form until the advent of ion exchange techniques.[27][28][29]:701[30][27][31][32]

Mosander first separated yttria into three fractions, all named for the ore: yttria, erbia, and terbia. "Terbia" was originally the fraction that contained the pink color, due to the element now known as erbium. "Erbia" (containing what is now known as terbium) originally was the fraction that was essentially colorless in solution. The insoluble oxide of this element was noted to be tinged brown.

Later workers had difficulty in observing the minor colorless "erbia", but the soluble pink fraction was impossible to miss. Arguments went back and forth as to whether erbia even existed. In the confusion, the original names got reversed, and the exchange of names stuck, so that the pink fraction referred eventually to the solution containing erbium (which in solution, is pink). It is now thought that workers using double sodium or potassium sulfates to remove ceria from yttria inadvertently lost the terbium into the ceria-containing precipitate. What is now known as terbium was only about 1% of the original yttria, but that was sufficient to impart a yellowish color to the yttrium oxide. Thus, terbium was a minor component in the original fraction containing it, where it was dominated by its immediate neighbors, gadolinium and dysprosium.

Thereafter, whenever other rare earths were teased apart from this mixture, whichever fraction gave the brown oxide retained the terbium name, until at last, the brown oxide of terbium was obtained in pure form. The 19th century investigators did not have the benefit of the UV fluorescence technology to observe the brilliant yellow or green Tb(III) fluorescence that would have made terbium easier to identify in solid mixtures or solutions.[28]



Terbium is contained along with other rare earth elements in many minerals, including monazite ((Ce,La,Th,Nd,Y)PO
with up to 0.03% terbium), xenotime (YPO
) and euxenite ((Y,Ca,Er,La,Ce,U,Th)(Nb,Ta,Ti)
with 1% or more terbium). The crust abundance of terbium is estimated as 1.2 mg/kg.[18] No terbium-dominant mineral has yet been found.[33]

Currently, the richest commercial sources of terbium are the ion-adsorption clays of southern China; the concentrates with about two-thirds yttrium oxide by weight have about 1% terbia. Small amounts of terbium occur in bastnäsite and monazite; when these are processed by solvent extraction to recover the valuable heavy lanthanides as samarium-europium-gadolinium concentrate, terbium is recovered therein. Due to the large volumes of bastnäsite processed relative to the ion-adsorption clays, a significant proportion of the world's terbium supply comes from bastnäsite.[4]

In 2018, a rich terbium supply was discovered off the coast of Japan 's Minamitori Island, with the stated supply being "enough to meet the global demand for 420 years".[34]


Crushed terbium-containing minerals are treated with hot concentrated sulfuric acid to produce water-soluble sulfates of rare earths. The acidic filtrates are partially neutralized with caustic soda to pH 3–4. Thorium precipitates out of solution as hydroxide and is removed. After that the solution is treated with ammonium oxalate to convert rare earths into their insoluble oxalates. The oxalates are decomposed to oxides by heating. The oxides are dissolved in nitric acid that excludes one of the main components, cerium, whose oxide is insoluble in HNO
. Terbium is separated as a double salt with ammonium nitrate by crystallization.[18]

The most efficient separation routine for terbium salt from the rare-earth salt solution is ion exchange. In this process, rare-earth ions are sorbed onto suitable ion-exchange resin by exchange with hydrogen, ammonium or cupric ions present in the resin. The rare earth ions are then selectively washed out by suitable complexing agents. As with other rare earths, terbium metal is produced by reducing the anhydrous chloride or fluoride with calcium metal. Calcium and tantalum impurities can be removed by vacuum remelting, distillation, amalgam formation or zone melting.[18]


Terbium is used as a dopant in calcium fluoride, calcium tungstate, and strontium molybdate, materials that are used in solid-state devices, and as a crystal stabilizer of fuel cells which operate at elevated temperatures, together with ZrO

Terbium is also used in alloys and in the production of electronic devices. As a component of Terfenol-D, terbium is used in actuators, in naval sonar systems, sensors, in the SoundBug device (its first commercial application), and other magnetomechanical devices. Terfenol-D is a terbium alloy that expands or contracts in the presence of a magnetic field. It has the highest magnetostriction of any alloy.[35]

Terbium oxide is used in green phosphors in fluorescent lamps and color TV tubes. Sodium terbium borate is used in solid state devices. The brilliant fluorescence allows terbium to be used as a probe in biochemistry, where it somewhat resembles calcium in its behavior. Terbium "green" phosphors (which fluoresce a brilliant lemon-yellow) are combined with divalent europium blue phosphors and trivalent europium red phosphors to provide the trichromatic lighting technology which is by far the largest consumer of the world's terbium supply. Trichromatic lighting provides much higher light output for a given amount of electrical energy than does incandescent lighting.[4]

Terbium is also used to detect endospores, as it acts as an assay of dipicolinic acid based on photoluminescence.[36]

In 2023, terbium compounds were used to create a lattice with one iron (Fe) atom, that was then examined by synchrotron x-ray beam, to examine one atom at sub-atomic levels for the first time.[37]


Handling of terbium, like other lanthanides, should be done with care. Terbium compounds show moderate toxicity, although there is limited data on the specific toxicity of the element. They can act as irritants to the skin and eyes upon contact. Ingestion of terbium compounds should be avoided due to their mildly toxic nature.[38][39]

In the event of exposure:

  • If inhaled: Move the person to fresh air, provide artificial respiration if breathing has stopped, and seek medical advice.
  • In case of skin contact: Wash immediately with soap and water, then rinse thoroughly and seek medical advice.
  • In case of eye contact: Rinse the eyes for several minutes under running water and consult a physician.
  • If swallowed: Seek immediate medical treatment.[40]

For safe handling and storage:

  • Keep terbium compounds in tightly sealed containers stored in a cool, dry place away from oxidizing agents.
  • Use personal protective equipment, such as impervious gloves and safety glasses, to prevent skin and eye contact.
  • Ensure adequate ventilation in the working area and avoid releasing terbium compounds into the environment without proper permits.[41]

Proper disposal of terbium compounds should be conducted in accordance with local environmental regulations.[42]

See also


  1. Meija, Juris; Coplen, Tyler B.; Berglund, Michael; Brand, Willi A.; De Bièvre, Paul; Gröning, Manfred; Holden, Norman E.; Irrgeher, Johanna et al. (2016). "Atomic weights of the elements 2013 (IUPAC Technical Report)". Pure and Applied Chemistry 88 (3): 265–91. doi:10.1515/pac-2015-0305. 
  2. Yttrium and all lanthanides except Ce and Pm have been observed in the oxidation state 0 in bis(1,3,5-tri-t-butylbenzene) complexes, see Cloke, F. Geoffrey N. (1993). "Zero Oxidation State Compounds of Scandium, Yttrium, and the Lanthanides". Chem. Soc. Rev. 22: 17–24. doi:10.1039/CS9932200017.  and Arnold, Polly L.; Petrukhina, Marina A.; Bochenkov, Vladimir E.; Shabatina, Tatyana I.; Zagorskii, Vyacheslav V.; Cloke (2003-12-15). "Arene complexation of Sm, Eu, Tm and Yb atoms: a variable temperature spectroscopic investigation". Journal of Organometallic Chemistry 688 (1–2): 49–55. doi:10.1016/j.jorganchem.2003.08.028. 
  3. Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. pp. E110. ISBN 0-8493-0464-4. 
  4. 4.0 4.1 4.2 4.3 4.4 4.5 Hammond, C. R. (2005). "The Elements". in Lide, D. R.. CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. ISBN 978-0-8493-0486-6. 
  5. "Rare-Earth Metal Long Term Air Exposure Test". 
  6. Shimada, T.; Ohno, Y.; Okazaki, T. et al. (2004). "Transport properties of C78, C90 and Dy@C82 fullerenes – nanopeapods by field effect transistors". Physica E: Low-dimensional Systems and Nanostructures 21 (2–4): 1089–1092. doi:10.1016/j.physe.2003.11.197. Bibcode2004PhyE...21.1089S. 
  7. Jackson, M. (2000). "Magnetism of Rare Earth". The IRM Quarterly 10 (3): 1. 
  8. 8.0 8.1 "Chemical reactions of Terbium". Webelements. 
  9. Gruen, D. M.; Koehler, W. C.; Katz, J. J. (April 1951). "Higher Oxides of the Lanthanide Elements: Terbium Dioxide". Journal of the American Chemical Society 73 (4): 1475–1479. doi:10.1021/ja01148a020. 
  10. Hobart, D. E.; Samhoun, K.; Young, J. P.; Norvell, V. E.; Mamantov, G.; Peterson, J. R. (1980). "Stabilization of Praseodymium(IV) and Terbium(IV) in Aqueous Carbonate Solution". Inorganic and Nuclear Chemistry Letters 16 (5): 321–328. doi:10.1016/0020-1650(80)80069-9. 
  11. Jenkins, T. F.; Woen, D. H; Mohanam, L. N.; Ziller, J. W.; Furche, F.; Evans, W. J. (2018). "Tetramethylcyclopentadienyl Ligands Allow Isolation of Ln(II) Ions across the Lanthanide Series in [K(2.2.2-cryptand)][(C5Me4H)3Ln] Complexes". Organometallics 141 (21): 3863–3873. doi:10.1021/acs.organomet.8b00557. 
  12. Macdonald, M. R.; Bates, J. E.; Ziller, J. W.; Furche, F.; Evans, W. J. (2013). "Completing the Series of +2 Ions for the Lanthanide Elements: Synthesis of Molecular Complexes of Pr2+, Gd2+, Tb2+, and Lu2+". Journal of the American Chemical Society 135 (21): 9857–9868. doi:10.1021/ja403753j. PMID 23697603. 
  13. Gould, C. A.; McClain, K. R.; Yu, J. M.; Groshens, T. J.; Furche, F. P.; Harvey, B. G.; Long, J. R. (2019-08-21). "Synthesis and Magnetism of Neutral, Linear Metallocene Complexes of Terbium(II) and Dysprosium(II)". Journal of the American Chemical Society 141 (33): 12967–12973. doi:10.1021/jacs.9b05816. ISSN 0002-7863. PMID 31375028. 
  14. Palumbo, C. T.; Zivkovic, I.; Scopelliti, R.; Mazzanti, M. (2019). "Molecular Complex of Tb in the +4 Oxidation State". Journal of the American Chemical Society 141 (25): 9827–9831. doi:10.1021/jacs.9b05337. PMID 31194529. [yes|permanent dead link|dead link}}]
  15. Rice, N. T.; Popov, I. A.; Russo, D. R.; Bacsa, J.; Batista, E. R.; Yang, P.; Telser, J.; La Pierre, H. S. (2019-08-21). "Design, Isolation, and Spectroscopic Analysis of a Tetravalent Terbium Complex". Journal of the American Chemical Society 141 (33): 13222–13233. doi:10.1021/jacs.9b06622. ISSN 0002-7863. PMID 31352780. 
  16. Willauer, A. R.; Palumbo, C. T.; Scopelliti, R.; Zivkovic, I.; Douair, I.; Maron, L.; Mazzanti, M. (2020). "Stabilization of the Oxidation State + IV in Siloxide-Supported Terbium Compounds". Angewandte Chemie International Edition 59 (9): 3549–3553. doi:10.1002/anie.201914733. PMID 31840371. 
  17. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8. 
  18. 18.0 18.1 18.2 18.3 Patnaik, Pradyot (2003). Handbook of Inorganic Chemical Compounds. McGraw-Hill. pp. 920–921. ISBN 978-0-07-049439-8. Retrieved 2009-06-06. 
  19. Cotton (2007). Advanced inorganic chemistry (6th ed.). Wiley-India. p. 1128. ISBN 978-81-265-1338-3. 
  20. Rau, J. V.; Chilingarov, N. S.; Leskiv, M. S.; Sukhoverkhov, V. F.; Rossi Albertini, V.; Sidorov, L. N. (August 2001). "Transition and rare earth metal fluorides as thermal sources of atomic and molecular fluorine". Le Journal de Physique IV 11 (PR3): Pr3–109–Pr3-113. doi:10.1051/jp4:2001314. 
  21. G. Meyer; Lester R. Morss (1991). Synthesis of Lanthanide and Actinide Compounds.. Springer Science & Business Media. p. 60. ISBN 978-0-7923-1018-1. 
  22. Gaumet, V.; Avignant, D. (1997). "Caesium Pentafluoroterbate, CsTbF5". Acta Crystallographica Section C: Crystal Structure Communications 53 (9): 1176–1178. doi:10.1107/S0108270197005556. Bibcode1997AcCrC..53.1176G. 
  23. Largeau, E.; El-Ghozzi, M.; Métin, J.; Avignant, D. (1997). "β-BaTbF6". Acta Crystallographica Section C: Crystal Structure Communications 53 (5): 530–532. doi:10.1107/S0108270196014527. Bibcode1997AcCrC..53..530L. 
  24. 24.0 24.1 24.2 24.3 Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017). "The NUBASE2016 evaluation of nuclear properties". Chinese Physics C 41 (3): 030001. doi:10.1088/1674-1137/41/3/030001. Bibcode2017ChPhC..41c0001A. 
  25. Müller, Cristina; Vermeulen, Christiaan; Köster, Ulli; Johnston, Karl; Türler, Andreas; Schibli, Roger; van der Meulen, Nicholas P. (2016-03-28). "Alpha-PET with terbium-149: evidence and perspectives for radiotheragnostics". EJNMMI Radiopharmacy and Chemistry (Springer Science and Business Media LLC) 1 (1): 5. doi:10.1186/s41181-016-0008-2. ISSN 2365-421X. PMID 29564382. 
  26. Eychenne, Romain; Chérel, Michel; Haddad, Férid; Guérard, François; Gestin, Jean-François (2021-06-18). "Overview of the Most Promising Radionuclides for Targeted Alpha Therapy: The "Hopeful Eight"". Pharmaceutics (MDPI AG) 13 (6): 906. doi:10.3390/pharmaceutics13060906. ISSN 1999-4923. PMID 34207408. 
  27. 27.0 27.1 Marshall, James L.; Marshall, Virginia R. (October 31, 2014). "Northern Scandinavia: An Elemental Treasure Trove". Science history: a traveler's guide. 1179. ACS Symposium Series. pp. 209–257. doi:10.1021/bk-2014-1179.ch011. ISBN 978-0-8412-3020-0. 
  28. 28.0 28.1 Gupta, C. K.; Krishnamurthy, Nagaiyar (2004). Extractive metallurgy of rare earths. CRC Press. p. 5. ISBN 978-0-415-33340-5. 
  29. Weeks, Mary Elvira (1956). The discovery of the elements (6th ed.). Easton, PA: Journal of Chemical Education. 
  30. Weeks, Mary Elvira (1932). "The discovery of the elements: XVI. The rare earth elements". Journal of Chemical Education 9 (10): 1751–1773. doi:10.1021/ed009p1751. Bibcode1932JChEd...9.1751W. 
  31. Marshall, James L. Marshall; Marshall, Virginia R. Marshall (2015). "Rediscovery of the elements: The Rare Earths–The Beginnings". The Hexagon: 41–45. Retrieved 30 December 2019. 
  32. Marshall, James L. Marshall; Marshall, Virginia R. Marshall (2015). "Rediscovery of the elements: The Rare Earths–The Confusing Years". The Hexagon: 72–77. Retrieved 30 December 2019. 
  33. Hudson Institute of Mineralogy (1993–2018). "". 
  34. Takaya, Yutaro et al. (2018-04-10). "The tremendous potential of deep-sea mud as a source of rare-earth elements". Scientific Reports 8 (1): 5763. doi:10.1038/s41598-018-23948-5. ISSN 2045-2322. PMID 29636486. Bibcode2018NatSR...8.5763T. 
  35. Rodriguez, C; Rodriguez, M.; Orue, I.; Vilas, J.; Barandiaran, J.; Gubieda, M.; Leon, L. (2009). "New elastomer–Terfenol-D magnetostrictive composites". Sensors and Actuators A: Physical 149 (2): 251. doi:10.1016/j.sna.2008.11.026. 
  36. Rosen, D. L.; Sharpless, C.; McGown, L. B. (1997). "Bacterial Spore Detection and Determination by Use of Terbium Dipicolinate Photoluminescence". Analytical Chemistry 69 (6): 1082–1085. doi:10.1021/ac960939w. 
  37. Ajayi, Tolulope M.; Shirato, Nozomi; Rojas, Tomas; Wieghold, Sarah; Cheng, Xinyue; Latt, Kyaw Zin; Trainer, Daniel J.; Dandu, Naveen K. et al. (June 2023). "Characterization of just one atom using synchrotron X-rays" (in en). Nature 618 (7963): 69–73. doi:10.1038/s41586-023-06011-w. ISSN 1476-4687. PMID 37259001. Bibcode2023Natur.618...69A. 
  38. "Harmful Effects of Terbium". 
  39. "Terbium". 
  40. "Terbium(III,IV) Oxide Safety Data Sheet". 
  41. Cite error: Invalid <ref> tag; no text was provided for refs named americanelementsstorage
  42. "Terbium(III) oxide - Handling and Storage". 

External links