Chemistry:Ruthenium

From HandWiki
Ruthenium, 44Ru
Ruthenium a half bar.jpg
Ruthenium
Pronunciation/rˈθniəm/ (roo-THEE-nee-əm)
Appearancesilvery white metallic
Standard atomic weight Ar, std(Ru)101.07(2)[1]
Ruthenium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Fe

Ru

Os
technetiumrutheniumrhodium
Atomic number (Z)44
Groupgroup 8
Periodperiod 5
Block  d-block
Element category  d-block
Electron configuration[Kr] 4d7 5s1
Electrons per shell2, 8, 18, 15, 1
Physical properties
Phase at STPsolid
Melting point2607 K ​(2334 °C, ​4233 °F)
Boiling point4423 K ​(4150 °C, ​7502 °F)
Density (near r.t.)12.45 g/cm3
when liquid (at m.p.)10.65 g/cm3
Heat of fusion38.59 kJ/mol
Heat of vaporization619 kJ/mol
Molar heat capacity24.06 J/(mol·K)
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 2588 2811 3087 3424 3845 4388
Atomic properties
Oxidation states−4, −2, 0, +1,[2] +2, +3, +4, +5, +6, +7, +8 (a mildly acidic oxide)
ElectronegativityPauling scale: 2.2
Ionization energies
  • 1st: 710.2 kJ/mol
  • 2nd: 1620 kJ/mol
  • 3rd: 2747 kJ/mol
Atomic radiusempirical: 134 pm
Covalent radius146±7 pm
Color lines in a spectral range
Spectral lines of ruthenium
Other properties
Natural occurrenceprimordial
Crystal structurehexagonal close-packed (hcp)
Hexagonal close packed crystal structure for ruthenium
Speed of sound thin rod5970 m/s (at 20 °C)
Thermal expansion6.4 µm/(m·K) (at 25 °C)
Thermal conductivity117 W/(m·K)
Electrical resistivity71 nΩ·m (at 0 °C)
Magnetic orderingparamagnetic[3]
Magnetic susceptibility+39·10−6 cm3/mol (298 K)[3]
Young's modulus447 GPa
Shear modulus173 GPa
Bulk modulus220 GPa
Poisson ratio0.30
Mohs hardness6.5
Brinell hardness2160 MPa
CAS Number7440-18-8
History
Namingafter Ruthenia (Latin for: medieval Kyivska Rus' region)
Discovery and first isolationKarl Ernst Claus (1844)
Main isotopes of ruthenium
Iso­tope Abun­dance Physics:Half-life (t1/2) Decay mode Pro­duct
96Ru 5.54% stable
97Ru syn 2.9 d ε 97Tc
γ
98Ru 1.87% stable
99Ru 12.76% stable
100Ru 12.60% stable
101Ru 17.06% stable
102Ru 31.55% stable
103Ru syn 39.26 d β 103Rh
γ
104Ru 18.62% stable
106Ru syn 373.59 d β 106Rh
Category Category: Ruthenium
view · talk · edit | references
Ru
data m.p. cat
in calc from C diff report ref
C 2334
K 2607 2607 0
F 4233 4233 0
max precision 0
WD


input C: 2334, K: 2607, F: 4233
comment
Ru
data b.p. cat
in calc from C diff report ref
C 4150
K 4423 4420 3 delta
F 7502 7500 2 delta
max precision 0
WD


input C: 4150, K: 4423, F: 7502
comment

Ruthenium is a chemical element; it has symbol Ru and atomic number 44. It is a rare transition metal belonging to the platinum group of the periodic table. Like the other metals of the platinum group, ruthenium is inert to most other chemicals. Karl Ernst Claus, a Russian-born scientist of Baltic-German ancestry, discovered the element in 1844 at Kazan State University and named ruthenium in honor of Russia.[lower-alpha 1] Ruthenium is usually found as a minor component of platinum ores; the annual production has risen from about 19 tonnes in 2009[4] to some 35.5 tonnes in 2017.[5] Most ruthenium produced is used in wear-resistant electrical contacts and thick-film resistors. A minor application for ruthenium is in platinum alloys and as a chemistry catalyst. A new application of ruthenium is as the capping layer for extreme ultraviolet photomasks. Ruthenium is generally found in ores with the other platinum group metals in the Ural Mountains and in North and South America. Small but commercially important quantities are also found in pentlandite extracted from Sudbury, Ontario, and in pyroxenite deposits in South Africa .[6]

Characteristics

Physical properties

Gas phase grown crystals of ruthenium metal

Ruthenium, a polyvalent hard white metal, is a member of the platinum group and is in group 8 of the periodic table:

Z Element No. of electrons/shell
26 iron 2, 8, 14, 2
44 ruthenium 2, 8, 18, 15, 1
76 osmium 2, 8, 18, 32, 14, 2
108 hassium 2, 8, 18, 32, 32, 14, 2

Whereas all other group 8 elements have two electrons in the outermost shell, in ruthenium, the outermost shell has only one electron (the final electron is in a lower shell). This anomaly is observed in the neighboring metals niobium (41), molybdenum (42), and rhodium (45).

Chemical properties

Ruthenium has four crystal modifications and does not tarnish at ambient conditions; it oxidizes upon heating to 800 °C (1,070 K). Ruthenium dissolves in fused alkalis to give ruthenates (RuO2−4). It is not attacked by acids (even aqua regia) but is attacked by sodium hypochlorite at room temperature, and halogens at high temperatures.[6] Indeed, ruthenium is most readily attacked by oxidizing agents.[7] Small amounts of ruthenium can increase the hardness of platinum and palladium. The corrosion resistance of titanium is increased markedly by the addition of a small amount of ruthenium.[6] The metal can be plated by electroplating and by thermal decomposition. A ruthenium–molybdenum alloy is known to be superconductive at temperatures below 10.6 K.[6] Ruthenium is the only 4d transition metal that can assume the group oxidation state +8, and even then it is less stable there than the heavier congener osmium: this is the first group from the left of the table where the second and third-row transition metals display notable differences in chemical behavior. Like iron but unlike osmium, ruthenium can form aqueous cations in its lower oxidation states of +2 and +3.[8]

Ruthenium is the first in a downward trend in the melting and boiling points and atomization enthalpy in the 4d transition metals after the maximum seen at molybdenum, because the 4d subshell is more than half full and the electrons are contributing less to metallic bonding. (Technetium, the previous element, has an exceptionally low value that is off the trend due to its half-filled [Kr]4d55s2 configuration, though it is not as far off the trend in the 4d series as manganese in the 3d transition series.)[9] Unlike the lighter congener iron, ruthenium is paramagnetic at room temperature, as iron also is above its Curie point.[10]

The reduction potentials in acidic aqueous solution for some common ruthenium ions are shown below:[11]

0.455 V Ru2+ + 2e ↔ Ru
0.249 V Ru3+ + e ↔ Ru2+
1.120 V RuO2 + 4H+ + 2e ↔ Ru2+ + 2H2O
1.563 V RuO2−4 + 8H+ + 4e ↔ Ru2+ + 4H2O
1.368 V RuO4 + 8H+ + 5e ↔ Ru2+ + 4H2O
1.387 V RuO4 + 4H+ + 4e ↔ RuO2 + 2H2O

Isotopes

Main page: Physics:Isotopes of ruthenium

Naturally occurring ruthenium is composed of seven stable isotopes. Additionally, 34 radioactive isotopes have been discovered. Of these radioisotopes, the most stable are 106Ru with a half-life of 373.59 days, 103Ru with a half-life of 39.26 days and 97Ru with a half-life of 2.9 days.[12][13]

Fifteen other radioisotopes have been characterized with atomic weights ranging from 89.93 u (90Ru) to 114.928 u (115Ru). Most of these have half-lives that are less than five minutes except 95Ru (half-life: 1.643 hours) and 105Ru (half-life: 4.44 hours).[12][13]

The primary decay mode before the most abundant isotope, 102Ru, is electron capture while the primary mode after is beta emission. The primary decay product before 102Ru is technetium and the primary decay product after is rhodium.[12][13]

106Ru is a product of fission of a nucleus of uranium or plutonium. High concentrations of detected atmospheric 106Ru were associated with an alleged undeclared nuclear accident in Russia in 2017.[14]

Occurrence

As the 78th most abundant element in Earth's crust, ruthenium is relatively rare,[15] found in about 100 parts per trillion.[16] This element is generally found in ores with the other platinum group metals in the Ural Mountains and in North and South America. Small but commercially important quantities are also found in pentlandite extracted from Sudbury, Ontario, Canada, and in pyroxenite deposits in South Africa . The native form of ruthenium is a very rare mineral (Ir replaces part of Ru in its structure).[17][18] Ruthenium has a relatively high fission product yield in nuclear fission and given that its most long lived radioisotope has a half life of "only" around a year, there are often proposals to recover ruthenium in a new kind of nuclear reprocessing from spent fuel. An unusual ruthenium deposit can also be found at the natural nuclear fission reactor that was active in Oklo, Gabon, some two billion years ago. Indeed, the isotope ratio of ruthenium found there was one of several ways used to confirm that a nuclear fission chain reaction had indeed occurred at that site in the geological past. Uranium is no longer mined at Oklo and there have never been serious attempts to recover any of the platinum group metals present there.

Production

Roughly 30 tonnes of ruthenium are mined each year[19] with world reserves estimated at 5,000 tonnes.[15] The composition of the mined platinum group metal (PGM) mixtures varies widely, depending on the geochemical formation. For example, the PGMs mined in South Africa contain on average 11% ruthenium while the PGMs mined in the former USSR contain only 2% (1992).[20][21] Ruthenium, osmium, and iridium are considered the minor platinum group metals.[10]

Ruthenium, like the other platinum group metals, is obtained commercially as a by-product from nickel, and copper, and platinum metals ore processing. During electrorefining of copper and nickel, noble metals such as silver, gold, and the platinum group metals precipitate as anode mud, the feedstock for the extraction.[17][18] The metals are converted to ionized solutes by any of several methods, depending on the composition of the feedstock. One representative method is fusion with sodium peroxide followed by dissolution in aqua regia, and solution in a mixture of chlorine with hydrochloric acid.[22][23] Osmium, ruthenium, rhodium, and iridium are insoluble in aqua regia and readily precipitate, leaving the other metals in solution. Rhodium is separated from the residue by treatment with molten sodium bisulfate. The insoluble residue, containing Ru, Os, and Ir is treated with sodium oxide, in which Ir is insoluble, producing dissolved Ru and Os salts. After oxidation to the volatile oxides, RuO4 is separated from OsO4 by precipitation of (NH4)3RuCl6 with ammonium chloride or by distillation or extraction with organic solvents of the volatile osmium tetroxide.[24] Hydrogen is used to reduce ammonium ruthenium chloride yielding a powder.[6][25] The product is reduced using hydrogen, yielding the metal as a powder or sponge metal that can be treated with powder metallurgy techniques or argon-arc welding.[6][26]

Ruthenium is contained in spent nuclear fuel both as a direct fission product and as a product of neutron absorption by long-lived fission product 99Tc. After allowing the unstable isotopes of ruthenium to decay, chemical extraction could yield ruthenium for use or sale in all applications ruthenium is otherwise used for.[27][28]

Ruthenium can also be produced by deliberate nuclear transmutation from 99Tc. Given the relatively long half life, high fission product yield and high chemical mobility in the environment, 99Tc is among the most often proposed non-actinides for commercial scale nuclear transmutation. 99Tc has a relatively big neutron cross section and given that technetium has no stable isotopes, a sample would not run into the problem of neutron activation of stable isotopes. Significant amounts of 99Tc are produced both by nuclear fission and nuclear medicine which makes ample use of 99mTc which decays to 99Tc. Exposing the 99Tc target to strong enough neutron radiation will eventually yield appreciable quantities of Ruthenium which can be chemically separated and sold while consuming 99Tc.[29][30]

Chemical compounds

The oxidation states of ruthenium range from 0 to +8, and −2. The properties of ruthenium and osmium compounds are often similar. The +2, +3, and +4 states are the most common. The most prevalent precursor is ruthenium trichloride, a red solid that is poorly defined chemically but versatile synthetically.[25]

Oxides and chalcogenides

Ruthenium can be oxidized to ruthenium(IV) oxide (RuO2, oxidation state +4), which can, in turn, be oxidized by sodium metaperiodate to the volatile yellow tetrahedral ruthenium tetroxide, RuO4, an aggressive, strong oxidizing agent with structure and properties analogous to osmium tetroxide. RuO4 is mostly used as an intermediate in the purification of ruthenium from ores and radiowastes.[31]

Dipotassium ruthenate (K2RuO4, +6) and potassium perruthenate (KRuO4, +7) are also known.[32] Unlike osmium tetroxide, ruthenium tetroxide is less stable, is strong enough as an oxidising agent to oxidise dilute hydrochloric acid and organic solvents like ethanol at room temperature, and is easily reduced to ruthenate (RuO2−4) in aqueous alkaline solutions; it decomposes to form the dioxide above 100 °C. Unlike iron but like osmium, ruthenium does not form oxides in its lower +2 and +3 oxidation states.[33] Ruthenium forms dichalcogenides, which are diamagnetic semiconductors crystallizing in the pyrite structure.[33] Ruthenium sulfide (RuS2) occurs naturally as the mineral laurite.

Like iron, ruthenium does not readily form oxoanions and prefers to achieve high coordination numbers with hydroxide ions instead. Ruthenium tetroxide is reduced by cold dilute potassium hydroxide to form black potassium perruthenate, KRuO4, with ruthenium in the +7 oxidation state. Potassium perruthenate can also be produced by oxidising potassium ruthenate, K2RuO4, with chlorine gas. The perruthenate ion is unstable and is reduced by water to form the orange ruthenate. Potassium ruthenate may be synthesized by reacting ruthenium metal with molten potassium hydroxide and potassium nitrate.[34]

Some mixed oxides are also known, such as MIIRuIVO3, Na3RuVO4, Na2RuV2O7, and MII2LnIIIRuVO6.[34]

Halides and oxyhalides

The highest known ruthenium halide is the hexafluoride, a dark brown solid that melts at 54 °C. It hydrolyzes violently upon contact with water and easily disproportionates to form a mixture of lower ruthenium fluorides, releasing fluorine gas. Ruthenium pentafluoride is a tetrameric dark green solid that is also readily hydrolyzed, melting at 86.5 °C. The yellow ruthenium tetrafluoride is probably also polymeric and can be formed by reducing the pentafluoride with iodine. Among the binary compounds of ruthenium, these high oxidation states are known only in the oxides and fluorides.[35]

Ruthenium trichloride is a well-known compound, existing in a black α-form and a dark brown β-form: the trihydrate is red.[36] Of the known trihalides, trifluoride is dark brown and decomposes above 650 °C, tribromide is dark-brown and decomposes above 400 °C, and triiodide is black.[35] Of the dihalides, difluoride is not known, dichloride is brown, dibromide is black, and diiodide is blue.[35] The only known oxyhalide is the pale green ruthenium(VI) oxyfluoride, RuOF4.[36]

Coordination and organometallic complexes

Main page: Chemistry:Organoruthenium chemistry
Tris(bipyridine)ruthenium(II) chloride
Skeletal formula of Grubbs' catalyst.
Grubbs' catalyst, which earned a Nobel Prize for its inventor, is used in alkene metathesis reactions.

Ruthenium forms a variety of coordination complexes. Examples are the many pentaammine derivatives [Ru(NH3)5L]n+ that often exist for both Ru(II) and Ru(III). Derivatives of bipyridine and terpyridine are numerous, best known being the luminescent tris(bipyridine)ruthenium(II) chloride.

Ruthenium forms a wide range compounds with carbon–ruthenium bonds. Grubbs' catalyst is used for alkene metathesis.[37] Ruthenocene is analogous to ferrocene structurally, but exhibits distinctive redox properties. The colorless liquid ruthenium pentacarbonyl converts in the absence of CO pressure to the dark red solid triruthenium dodecacarbonyl. Ruthenium trichloride reacts with carbon monoxide to give many derivatives including RuHCl(CO)(PPh3)3 and Ru(CO)2(PPh3)3 (Roper's complex). Heating solutions of ruthenium trichloride in alcohols with triphenylphosphine gives tris(triphenylphosphine)ruthenium dichloride (RuCl2(PPh3)3), which converts to the hydride complex chlorohydridotris(triphenylphosphine)ruthenium(II) (RuHCl(PPh3)3).[25]

History

Though naturally occurring platinum alloys containing all six platinum-group metals were used for a long time by pre-Columbian Americans and known as a material to European chemists from the mid-16th century, not until the mid-18th century was platinum identified as a pure element. That natural platinum contained palladium, rhodium, osmium and iridium was discovered in the first decade of the 19th century.[38] Platinum in alluvial sands of Russian rivers gave access to raw material for use in plates and medals and for the minting of ruble coins, starting in 1828.[39] Residues from platinum production for coinage were available in the Russian Empire, and therefore most of the research on them was done in Eastern Europe.

It is possible that the Poland chemist Jędrzej Śniadecki isolated element 44 (which he called "vestium" after the asteroid Vesta discovered shortly before) from South American platinum ores in 1807. He published an announcement of his discovery in 1808.[40] His work was never confirmed, however, and he later withdrew his claim of discovery.[15]

Jöns Berzelius and Gottfried Osann nearly discovered ruthenium in 1827.[41] They examined residues that were left after dissolving crude platinum from the Ural Mountains in aqua regia. Berzelius did not find any unusual metals, but Osann thought he found three new metals, which he called pluranium, ruthenium, and polinium.[6] This discrepancy led to a long-standing controversy between Berzelius and Osann about the composition of the residues.[42] As Osann was not able to repeat his isolation of ruthenium, he eventually relinquished his claims.[42][43] The name "ruthenium" was chosen by Osann because the analysed samples stemmed from the Ural Mountains in Russia.[44] The name itself derives from the Latin word Ruthenia; this word was used at the time as the Latin name for Russia.[42][lower-alpha 1]

In 1844, Karl Ernst Claus, a Russian scientist of Baltic German descent, showed that the compounds prepared by Gottfried Osann contained small amounts of ruthenium, which Claus had discovered the same year.[6][38] Claus isolated ruthenium from the platinum residues of rouble production while he was working in Kazan University, Kazan,[42] the same way its heavier congener osmium had been discovered four decades earlier.[16] Claus showed that ruthenium oxide contained a new metal and obtained 6 grams of ruthenium from the part of crude platinum that is insoluble in aqua regia.[42] Choosing the name for the new element, Claus stated: "I named the new body, in honour of my Motherland, ruthenium. I had every right to call it by this name because Mr. Osann relinquished his ruthenium and the word does not yet exist in chemistry."[42][45] In doing so, Claus started a trend that continues to this day – naming an element after a country.[46]

Applications

Approximately 30.9 tonnes of ruthenium were consumed in 2016, 13.8 of them in electrical applications, 7.7 in catalysis, and 4.6 in electrochemistry.[19]

Because it hardens platinum and palladium alloys, ruthenium is used in electrical contacts, where a thin film is sufficient to achieve the desired durability. With its similar properties to and lower cost than rhodium,[26] electric contacts are a major use of ruthenium.[17][47] The ruthenium plate is applied to the electrical contact and electrode base metal by electroplating[48] or sputtering.[49]

Ruthenium dioxide with lead and bismuth ruthenates are used in thick-film chip resistors.[50][51][52] These two electronic applications account for 50% of the ruthenium consumption.[15]

Ruthenium is seldom alloyed with metals outside the platinum group, where small quantities improve some properties. The added corrosion resistance in titanium alloys led to the development of a special alloy with 0.1% ruthenium.[53] Ruthenium is also used in some advanced high-temperature single-crystal superalloys, with applications that include the turbines in jet engines. Several nickel based superalloy compositions are described, such as EPM-102 (with 3% Ru), TMS-162 (with 6% Ru), TMS-138,[54] and TMS-174,[55][56] the latter two containing 6% rhenium.[57] Fountain pen nibs are frequently tipped with ruthenium alloy. From 1944 onward, the Parker 51 fountain pen was fitted with the "RU" nib, a 14K gold nib tipped with 96.2% ruthenium and 3.8% iridium.[58]

Ruthenium is a component of mixed-metal oxide (MMO) anodes used for cathodic protection of underground and submerged structures, and for electrolytic cells for such processes as generating chlorine from salt water.[59] The fluorescence of some ruthenium complexes is quenched by oxygen, finding use in optode sensors for oxygen.[60] Ruthenium red, [(NH3)5Ru-O-Ru(NH3)4-O-Ru(NH3)5]6+, is a biological stain used to stain polyanionic molecules such as pectin and nucleic acids for light microscopy and electron microscopy.[61] The beta-decaying isotope 106 of ruthenium is used in radiotherapy of eye tumors, mainly malignant melanomas of the uvea.[62] Ruthenium-centered complexes are being researched for possible anticancer properties.[63] Compared with platinum complexes, those of ruthenium show greater resistance to hydrolysis and more selective action on tumors.[citation needed]

Ruthenium tetroxide exposes latent fingerprints by reacting on contact with fatty oils or fats with sebaceous contaminants and producing brown/black ruthenium dioxide pigment.[64]

Halloysite nanotubes intercalated with ruthenium catalytic nanoparticles[65]

Electronics

Electronics is the largest use of ruthenium.[19] Ru metal is particularly nonvolatile, which is advantageous in microelectronic devices. Ru and its main oxide RuO2 have comparable electrical resistivities.[66] Copper can be directly electroplated onto ruthenium,[67] particular applications include barrier layers, transistor gates, and interconnects.[68] Ru films can be deposited by chemical vapor deposition using volatile complexes such as ruthenium tetroxide and the organoruthenium compound (cyclohexadiene)Ru(CO)3.[69]

Catalysis

Many ruthenium-containing compounds exhibit useful catalytic properties. The catalysts are conveniently divided into those that are soluble in the reaction medium, homogeneous catalysts, and those that are not, which are called heterogeneous catalysts.

Homogeneous catalysis

Solutions containing ruthenium trichloride are highly active for olefin metathesis. Such catalysts are used commercially for the production of polynorbornene for example.[70] Well defined ruthenium carbene and alkylidene complexes show similar reactivity but are only used on small-scale.[71] The Grubbs' catalysts for example have been employed in the preparation of drugs and advanced materials.

RuCl3-catalyzed ring-opening metathesis polymerization reaction giving polynorbornene

Ruthenium complexes are highly active catalysts for transfer hydrogenations (sometimes referred to as "borrowing hydrogen" reactions). Chiral ruthenium complexes, introduced by Ryoji Noyori, are employed for the enantioselective hydrogenation of ketones, aldehydes, and imines.[72] A typical catalyst is (cymene)Ru(S,S-TsDPEN):[73][74]

[RuCl(S,S-TsDPEN)(cymene)]-catalysed (R,R)-hydrobenzoin synthesis (yield 100%, ee >99%)

A Nobel Prize in Chemistry was awarded in 2001 to Ryōji Noyori for contributions to the field of asymmetric hydrogenation.

Heterogeneous catalysis

Ruthenium-promoted cobalt catalysts are used in Fischer–Tropsch synthesis.[75]

Biology

The inorganic dye ammoniated ruthenium oxychloride, also known as ruthenium red, is used in histology to stain aldehyde fixed mucopolysaccharides.

Emerging applications

Some ruthenium complexes absorb light throughout the visible spectrum and are being actively researched for solar energy technologies. For example, ruthenium-based compounds have been used for light absorption in dye-sensitized solar cells, a promising new low-cost solar cell system.[76]

Many ruthenium-based oxides show very unusual properties, such as a quantum critical point behavior,[77] exotic superconductivity (in its strontium ruthenate form),[78] and high-temperature ferromagnetism.[79]

Health effects

Little is known about the health effects of ruthenium[80] and it is relatively rare for people to encounter ruthenium compounds.[81] Metallic ruthenium is inert (is not chemically reactive).[80] Some compounds such as ruthenium oxide (RuO4) are highly toxic and volatile.[81]

See also

  • Airborne radioactivity increase in Europe in autumn 2017

Notes

  1. 1.0 1.1 Cite error: Invalid <ref> tag; no text was provided for refs named name_origin

References

  1. Meija, Juris; Coplen, Tyler B.; Berglund, Michael; Brand, Willi A.; De Bièvre, Paul; Gröning, Manfred; Holden, Norman E.; Irrgeher, Johanna et al. (2016). "Atomic weights of the elements 2013 (IUPAC Technical Report)". Pure and Applied Chemistry 88 (3): 265–91. doi:10.1515/pac-2015-0305. 
  2. "Ruthenium: ruthenium(I) fluoride compound data". OpenMOPAC.net. http://openmopac.net/data_normal/ruthenium(i)%20fluoride_jmol.html. 
  3. 3.0 3.1 Haynes, p. 4.130
  4. Summary. Ruthenium. platinum.matthey.com, p. 9 (2009)
  5. PGM Market Report. platinum.matthey.com, p. 30 (May 2018)
  6. 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 Haynes (2016), p. 4.31.
  7. Greenwood & Earnshaw (1997), p. 1076.
  8. Greenwood & Earnshaw (1997), p. 1078.
  9. Greenwood & Earnshaw (1997), p. 1075.
  10. 10.0 10.1 Greenwood & Earnshaw (1997), p. 1074.
  11. Greenwood & Earnshaw (1997), p. 1077.
  12. 12.0 12.1 12.2 Lide, D. R., ed (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. ISBN 0-8493-0486-5.  Section 11, Table of the Isotopes
  13. 13.0 13.1 13.2 Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A 729: 3–128, doi:10.1016/j.nuclphysa.2003.11.001, Bibcode2003NuPhA.729....3A, https://hal.archives-ouvertes.fr/in2p3-00020241/document 
  14. Masson, O.; Steinhauser, G.; Zok, D.; Saunier, O.; Angelov, H.; Babić, D.; Bečková, V.; Bieringer, J. et al. (2019). "Airborne concentrations and chemical considerations of radioactive ruthenium from an undeclared major nuclear release in 2017". PNAS 116 (34): 16750–16759. doi:10.1073/pnas.1907571116. PMID 31350352. Bibcode2019PNAS..11616750M. 
  15. 15.0 15.1 15.2 15.3 Emsley, J. (2003). "Ruthenium". Nature's Building Blocks: An A-Z Guide to the Elements. Oxford, England, UK: Oxford University Press. pp. 368–370. ISBN 978-0-19-850340-8. https://archive.org/details/naturesbuildingb0000emsl/page/368. 
  16. 16.0 16.1 Greenwood & Earnshaw (1997), p. 1071.
  17. 17.0 17.1 17.2 George, Micheal W.. "2006 Minerals Yearbook: Platinum-Group Metals". United States Geological Survey USGS. http://minerals.usgs.gov/minerals/pubs/commodity/platinum/myb1-2006-plati.pdf. 
  18. 18.0 18.1 "Commodity Report: Platinum-Group Metals". United States Geological Survey USGS. http://minerals.usgs.gov/minerals/pubs/commodity/platinum/mcs-2008-plati.pdf. 
  19. 19.0 19.1 19.2 Loferski, Patricia J.; Ghalayini, Zachary T. and Singerling, Sheryl A. (2018) Platinum-group metals. 2016 Minerals Yearbook. USGS. p. 57.3.
  20. Hartman, H. L., ed (1992). SME mining engineering handbook. Littleton, Colo.: Society for Mining, Metallurgy, and Exploration. p. 69. ISBN 978-0-87335-100-3. https://books.google.com/books?id=Wm6QMRaX9C4C&pg=PA69. 
  21. Harris, Donald C.; Cabri, Louis J. (1 August 1973). "The nomenclature of the natural alloys of osmium, iridium and ruthenium based on new compositional data of alloys from world-wide occurrences". The Canadian Mineralogist 12 (2): 104–112. NAID 20000798606. https://pubs.geoscienceworld.org/canmin/article-abstract/12/2/104/10913/The-nomenclature-of-the-natural-alloys-of-osmium. 
  22. Renner, Hermann; Schlamp, Günther; Kleinwächter, Ingo; Drost, Ernst; Lüschow, Hans Martin; Tews, Peter; Panster, Peter; Diehl, Manfred et al. (2001). "Platinum Group Metals and Compounds". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a21_075. ISBN 978-3-527-30673-2. 
  23. Seymour, R. J.; O'Farrelly, J. I. (2001). "Platinum-group metals". Kirk Othmer Encyclopedia of Chemical Technology. Wiley. doi:10.1002/0471238961.1612012019052513.a01.pub2. ISBN 978-0471238966. 
  24. Gilchrist, Raleigh (1943). "The Platinum Metals". Chemical Reviews 32 (3): 277–372. doi:10.1021/cr60103a002. 
  25. 25.0 25.1 25.2 Cotton, Simon (1997). Chemistry of Precious Metals. Springer-Verlag New York, LLC. pp. 1–20. ISBN 978-0-7514-0413-5. https://books.google.com/books?id=6VKAs6iLmwcC&pg=PA2. 
  26. 26.0 26.1 Hunt, L. B.; Lever, F. M. (1969). "Platinum Metals: A Survey of Productive Resources to industrial Uses". Platinum Metals Review 13 (4): 126–138. http://www.platinummetalsreview.com/pdf/pmr-v13-i4-126-138.pdf. 
  27. Swain, Pravati; Mallika, C.; Srinivasan, R.; Mudali, U. Kamachi; Natarajan, R. (November 2013). "Separation and recovery of ruthenium: a review". Journal of Radioanalytical and Nuclear Chemistry 298 (2): 781–796. doi:10.1007/s10967-013-2536-5. 
  28. Johal, Sukhraaj Kaur; Boxall, Colin; Gregson, Colin; Steele, Carl (24 July 2015). "Ruthenium Volatilisation from Reprocessed Spent Nuclear Fuel – Studying the Baseline Thermodynamics of Ru(III)". ECS Transactions 66 (21): 31–42. doi:10.1149/06621.0031ecst. Bibcode2015ECSTr..66u..31J. https://eprints.lancs.ac.uk/id/eprint/78523/2/SJohal_CBoxall_ECSTrans_Paper_16_July_2015_Final_v2.pdf. 
  29. Konings, R. J. M.; Conrad, R. (1 September 1999). "Transmutation of technetium – results of the EFTTRA-T2 experiment". Journal of Nuclear Materials 274 (3): 336–340. doi:10.1016/S0022-3115(99)00107-5. Bibcode1999JNuM..274..336K. 
  30. Peretroukhine, Vladimir; Radchenko, Viacheslav; Kozar', Andrei; Tarasov, Valeriy; Toporov, Iury; Rotmanov, Konstantin; Lebedeva, Lidia; Rovny, Sergey et al. (December 2004). "Technetium transmutation and production of artificial stable ruthenium". Comptes Rendus Chimie 7 (12): 1215–1218. doi:10.1016/j.crci.2004.05.002. https://comptes-rendus.academie-sciences.fr/chimie/articles/10.1016/j.crci.2004.05.002/. 
  31. Swain, P.; Mallika, C.; Srinivasan, R.; Mudali, U. K.; Natarajan, R. (2013). "Separation and recovery of ruthenium: a review". J. Radioanal. Nucl. Chem. 298 (2): 781–796. doi:10.1007/s10967-013-2536-5. 
  32. Greenwood & Earnshaw (1997), p. [page needed].
  33. 33.0 33.1 Greenwood & Earnshaw (1997), pp. 1080–1081.
  34. 34.0 34.1 Greenwood & Earnshaw (1997), p. 1082.
  35. 35.0 35.1 35.2 Greenwood & Earnshaw (1997), p. 1083.
  36. 36.0 36.1 Greenwood & Earnshaw (1997), p. 1084.
  37. Hartwig, J. F. (2010) Organotransition Metal Chemistry, from Bonding to Catalysis, University Science Books: New York. ISBN:1-891389-53-X
  38. 38.0 38.1 Weeks, Mary Elvira (1932). "The discovery of the elements. VIII. The platinum metals". Journal of Chemical Education 9 (6): 1017. doi:10.1021/ed009p1017. Bibcode1932JChEd...9.1017W. 
  39. Raub, Christoph J. (2004). "The Minting of Platinum Roubles. Part I: History and Current Investigations". Platinum Metals Review 48 (2): 66–69. http://www.platinummetalsreview.com/article/48/2/66-69/. 
  40. Śniadecki, Jędrzej (1808) (in pl). Rosprawa o nowym metallu w surowey platynie odkrytym. Nakładém i Drukiém Józefa Zawadzkiego. OCLC 739088520. https://www.dbc.wroc.pl/publication/5247. 
  41. "New metals in the Uralian platina". The Philosophical Magazine 2 (11): 391–392. 1 November 1827. doi:10.1080/14786442708674516. https://books.google.com/books?id=x57C3yhRPUAC&pg=PA391. 
  42. 42.0 42.1 42.2 42.3 42.4 42.5 Cite error: Invalid <ref> tag; no text was provided for refs named DiscoRu
  43. Osann, Gottfried (1829). "Berichtigung, meine Untersuchung des uralschen Platins betreffend". Poggendorffs Annalen der Physik und Chemie 15: 158. doi:10.1002/andp.18290910119. http://gallica.bnf.fr/ark:/12148/bpt6k15100n.image.f168.langDE. 
  44. Osann, G. (1828). "Fortsetzung der Untersuchung des Platins vom Ural" (in de). Annalen der Physik 89 (6): 283–297. doi:10.1002/andp.18280890609. Bibcode1828AnP....89..283O. https://zenodo.org/record/1423520. 
  45. Claus, Karl (1845). "О способе добывания чистой платины из руд" (in ru). Горный журнал (Mining Journal) 7 (3): 157–163. 
  46. Meija, Juris (September 2021). "Politics at the periodic table". Nature Chemistry 13 (9): 814–816. doi:10.1038/s41557-021-00780-5. PMID 34480093. Bibcode2021NatCh..13..814M. 
  47. Rao, C.; Trivedi, D. (2005). "Chemical and electrochemical depositions of platinum group metals and their applications". Coordination Chemistry Reviews 249 (5–6): 613. doi:10.1016/j.ccr.2004.08.015. 
  48. Weisberg, A. (1999). "Ruthenium plating". Metal Finishing 97: 297. doi:10.1016/S0026-0576(00)83089-5. 
  49. Merrill L. Minges (1989). Electronic materials handbook. Materials Park, OH: ASM International. p. 184. ISBN 978-0-87170-285-2. https://books.google.com/books?id=EkStW7v8VPkC&pg=RA3-PA550. 
  50. Busana, M. G.; Prudenziati, M.; Hormadaly, J. (2006). "Microstructure development and electrical properties of RuO2-based lead-free thick film resistors". Journal of Materials Science: Materials in Electronics 17 (11): 951. doi:10.1007/s10854-006-0036-x. 
  51. Rane, Sunit; Prudenziati, Maria; Morten, Bruno (2007). "Environment friendly perovskite ruthenate based thick film resistors". Materials Letters 61 (2): 595. doi:10.1016/j.matlet.2006.05.015. 
  52. Slade, Paul G., ed (1999). Electrical contacts : principles and applications. New York, NY: Dekker. pp. 184, 345. ISBN 978-0-8247-1934-0. https://books.google.com/books?id=c2YxCCaM9RIC&pg=PA184. 
  53. Schutz, R. W. (April 1996). "Ruthenium Enhanced Titanium Alloys". Platinum Metals Review 40 (2): 54–61. 
  54. "Fourth generation nickel base single crystal superalloy. TMS-138 / 138A". High Temperature Materials Center, National Institute for Materials Science, Japan. July 2006. http://sakimori.nims.go.jp/catalog/TMS-138-A.pdf. 
  55. Koizumi, Yutaka. "Development of a Next-Generation Ni-base Single Crystal Superalloy". Proceedings of the International Gas Turbine Congress, Tokyo 2–7 November 2003. http://nippon.zaidan.info/seikabutsu/2003/00916/pdf/igtc2003tokyo_ts119.pdf. 
  56. Walston, S.; Cetel, A.; MacKay, R.; O'Hara, K.; Duhl, D.; Dreshfield, R. (December 2004). "Joint Development of a Fourth Generation Single Crystal Superalloy". NASA. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20050019231_2005000097.pdf. 
  57. Bondarenko, Yu. A.; Kablov, E. N.; Surova, V. A.; Echin, A. B. (2006). "Effect of high-gradient directed crystallization on the structure and properties of rhenium-bearing single-crystal alloy". Metal Science and Heat Treatment 48 (7–8): 360. doi:10.1007/s11041-006-0099-6. Bibcode2006MSHT...48..360B. 
  58. Mottishaw, J. (1999). "Notes from the Nib Works—Where's the Iridium?". The PENnant XIII (2). http://www.nibs.com/article4.html. 
  59. Cardarelli, François (2008). "Dimensionally Stable Anodes (DSA) for Chlorine Evolution". Materials Handbook: A Concise Desktop Reference. London: Springer. pp. 581–582. ISBN 978-1-84628-668-1. https://books.google.com/books?id=ArsfQZig_9AC&pg=PT612. 
  60. Varney, Mark S. (2000). "Oxygen Microoptode". Chemical sensors in oceanography. Amsterdam: Gordon & Breach. p. 150. ISBN 978-90-5699-255-2. 
  61. Hayat, M. A. (1993). "Ruthenium red". Stains and cytochemical methods. New York, NY: Plenum Press. pp. 305–310. ISBN 978-0-306-44294-0. https://books.google.com/books?id=oGj7MLioFlQC&pg=PA305. 
  62. Wiegel, T. (1997). Radiotherapy of ocular disease, Ausgabe 13020. Basel, Freiburg: Karger. ISBN 978-3-8055-6392-5. https://books.google.com/books?id=Aa83RoXCNk0C&pg=PA97. 
  63. Richards, Adair D.; Rodger, Alison (2007). "Synthetic metallomolecules as agents for the control of DNA structure". Chem. Soc. Rev. 36 (3): 471–483. doi:10.1039/b609495c. PMID 17325786. http://wrap.warwick.ac.uk/2189/1/WRAP_Richards_Revised_article1.pdf. 
  64. NCJRS Abstract – National Criminal Justice Reference Service. Ncjrs.gov. Retrieved on 2017-02-28.
  65. Vinokurov, Vladimir A.; Stavitskaya, Anna V.; Chudakov, Yaroslav A.; Ivanov, Evgenii V.; Shrestha, Lok Kumar; Ariga, Katsuhiko; Darrat, Yusuf A.; Lvov, Yuri M. (2017). "Formation of metal clusters in halloysite clay nanotubes". Science and Technology of Advanced Materials 18 (1): 147–151. doi:10.1080/14686996.2016.1278352. PMID 28458738. Bibcode2017STAdM..18..147V. 
  66. Kwon, Oh-Kyum; Kim, Jae-Hoon; Park, Hyoung-Sang; Kang, Sang-Won (2004). "Atomic Layer Deposition of Ruthenium Thin Films for Copper Glue Layer". Journal of the Electrochemical Society 151 (2): G109. doi:10.1149/1.1640633. Bibcode2004JElS..151G.109K. 
  67. Moffat, T. P.; Walker, M.; Chen, P. J.; Bonevich, J. E.; Egelhoff, W. F.; Richter, L.; Witt, C.; Aaltonen, T. et al. (2006). "Electrodeposition of Cu on Ru Barrier Layers for Damascene Processing". Journal of the Electrochemical Society 153 (1): C37. doi:10.1149/1.2131826. Bibcode2006JElS..153C..37M. https://zenodo.org/record/1236224. 
  68. Bernasconi, R.; Magagnin, L. (2019). "Review—Ruthenium as Diffusion Barrier Layer in Electronic Interconnects: Current Literature with a Focus on Electrochemical Deposition Methods". Journal of the Electrochemical Society 166 (1): D3219–D3225. doi:10.1149/2.0281901jes. Bibcode2019JElS..166D3219B. 
  69. Vasilyev, V. Yu. (2010). "Low-temperature pulsed CVD of ruthenium thin films for micro- and nanoelectronic applications, Part 1: Equipment and methodology". Russian Microelectronics 39: 26–33. doi:10.1134/S106373971001004X. 
  70. Delaude, Lionel; Noels, Alfred F. (2005). Kirk-Othmer Encyclopedia of Chemical Technology. Weinheim: Wiley-VCH. doi:10.1002/0471238961.metanoel.a01. ISBN 978-0471238966. 
  71. Fürstner, Alois (2000). "Olefin Metathesis and Beyond". Angewandte Chemie International Edition 39 (17): 3012–3043. doi:10.1002/1521-3773(20000901)39:17<3012::AID-ANIE3012>3.0.CO;2-G. PMID 11028025. 
  72. Noyori, R.; Ohkuma, T.; Kitamura, M.; Takaya, H.; Sayo, N.; Kumobayashi, H.; Akutagawa, S. (1987), "Asymmetric hydrogenation of .beta.-keto carboxylic esters. A practical, purely chemical access to .beta.-hydroxy esters in high enantiomeric purity", Journal of the American Chemical Society 109 (19): 5856, doi:10.1021/ja00253a051 
  73. Ikariya, Takao; Hashiguchi, Shohei; Murata, Kunihiko and Noyori, Ryōji (2005). "Preparation of Optically Active (R,R)-Hydrobenzoin from Benzoin or Benzil". Organic Syntheses: 10. http://www.orgsyn.org/demo.aspx?prep=v82p0010. 
  74. Chen, Fei (2015). "Synthesis of Optically Active 1,2,3,4-Tetrahydroquinolines via Asymmetric Hydrogenation Using Iridium-Diamine Catalyst". Org. Synth. 92: 213–226. doi:10.15227/orgsyn.092.0213. 
  75. Schulz, Hans (1999). "Short history and present trends of Fischer–Tropsch synthesis". Applied Catalysis A: General 186 (1–2): 3–12. doi:10.1016/S0926-860X(99)00160-X. 
  76. Kuang, Daibin; Ito, Seigo; Wenger, Bernard; Klein, Cedric; Moser, Jacques-E; Humphry-Baker, Robin; Zakeeruddin, Shaik M.; Grätzel, Michael (2006). "High Molar Extinction Coefficient Heteroleptic Ruthenium Complexes for Thin Film Dye-Sensitized Solar Cells". Journal of the American Chemical Society 128 (12): 4146–54. doi:10.1021/ja058540p. PMID 16551124. 
  77. Perry, R.; Kitagawa, K.; Grigera, S.; Borzi, R.; MacKenzie, A.; Ishida, K.; Maeno, Y. (2004). "Multiple First-Order Metamagnetic Transitions and Quantum Oscillations in Ultrapure Sr.3Ru2O7". Physical Review Letters 92 (16): 166602. doi:10.1103/PhysRevLett.92.166602. PMID 15169251. Bibcode2004PhRvL..92p6602P. 
  78. Maeno, Yoshiteru; Rice, T. Maurice; Sigrist, Manfred (2001). "The Intriguing Superconductivity of Strontium Ruthenate". Physics Today 54 (1): 42. doi:10.1063/1.1349611. Bibcode2001PhT....54a..42M. http://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/49957/1/PTO000042.pdf. 
  79. Shlyk, Larysa; Kryukov, Sergiy; Schüpp-Niewa, Barbara; Niewa, Rainer; De Long, Lance E. (2008). "High-Temperature Ferromagnetism and Tunable Semiconductivity of (Ba, Sr)M2±xRu4∓xO11 (M = Fe, Co): A New Paradigm for Spintronics". Advanced Materials 20 (7): 1315. doi:10.1002/adma.200701951. Bibcode2008AdM....20.1315S. 
  80. 80.0 80.1 "Ruthenium". https://www.espimetals.com/index.php/msds/237-Ruthenium. 
  81. 81.0 81.1 "Ruthenium (Ru) - Chemical properties, Health and Environmental effects". https://www.lenntech.com/periodic/elements/ru.htm. 

Bibliography

  • Haynes, William M., ed (2016). CRC Handbook of Chemistry and Physics (97th ed.). CRC Press. ISBN 9781498754293. 

External links