From HandWiki
Rhenium, 75Re
Rhenium single crystal bar and 1cm3 cube.jpg
Pronunciation/ˈrniəm/ (REE-nee-əm)
Standard atomic weight Ar, std(Re)186.207(1)[1]
Rhenium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson


Atomic number (Z)75
Groupgroup 7
Periodperiod 6
Block  d-block
Element category  d-block
Electron configuration[Xe] 4f14 5d5 6s2
Electrons per shell2, 8, 18, 32, 13, 2
Physical properties
Phase at STPsolid
Melting point3459 K ​(3186 °C, ​5767 °F)
Boiling point5903 K ​(5630 °C, ​10,170 °F)
Density (near r.t.)21.02 g/cm3
when liquid (at m.p.)18.9 g/cm3
Heat of fusion60.43 kJ/mol
Heat of vaporization704 kJ/mol
Molar heat capacity25.48 J/(mol·K)
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 3303 3614 4009 4500 5127 5954
Atomic properties
Oxidation states−3, −1, 0, +1, +2, +3, +4, +5, +6, +7 (a mildly acidic oxide)
ElectronegativityPauling scale: 1.9
Ionization energies
  • 1st: 760 kJ/mol
  • 2nd: 1260 kJ/mol
  • 3rd: 2510 kJ/mol
  • (more)
Atomic radiusempirical: 137 pm
Covalent radius151±7 pm
Color lines in a spectral range
Spectral lines of rhenium
Other properties
Natural occurrenceprimordial
Crystal structurehexagonal close-packed (hcp)
Hexagonal close packed crystal structure for rhenium
Speed of sound thin rod4700 m/s (at 20 °C)
Thermal expansion6.2 µm/(m·K)
Thermal conductivity48.0 W/(m·K)
Electrical resistivity193 nΩ·m (at 20 °C)
Magnetic orderingparamagnetic[2]
Magnetic susceptibility+67.6·10−6 cm3/mol (293 K)[3]
Young's modulus463 GPa
Shear modulus178 GPa
Bulk modulus370 GPa
Poisson ratio0.30
Mohs hardness7.0
Vickers hardness1350–7850 MPa
Brinell hardness1320–2500 MPa
CAS Number7440-15-5
Namingafter the river Rhine (German: Rhein)
DiscoveryMasataka Ogawa (1908)
First isolationMasataka Ogawa (1919)
Named byWalter Noddack, Ida Noddack, Otto Berg (1925)
Main isotopes of rhenium
Iso­tope Abun­dance Physics:Half-life (t1/2) Decay mode Pro­duct
185Re 37.4% stable
187Re 62.6% 4.12×1010 y β 187Os
Category Category: Rhenium
view · talk · edit | references
data m.p. cat
in calc from C diff report ref
C 3186
K 3459 3459 0
F 5767 5767 0
max precision 0

input C: 3186, K: 3459, F: 5767
data b.p. cat
in calc from C diff report ref
C 5630
K 5903 5900 3 delta
F 10170 10170 0
max precision 0

input C: 5630, K: 5903, F: 10,170

Rhenium is a chemical element; it has symbol Re and atomic number 75. It is a silvery-gray, heavy, third-row transition metal in group 7 of the periodic table. With an estimated average concentration of 1 part per billion (ppb), rhenium is one of the rarest elements in the Earth's crust. It has the third-highest melting point and second-highest boiling point of any element at 5869 K.[4] It resembles manganese and technetium chemically and is mainly obtained as a by-product of the extraction and refinement of molybdenum and copper ores. It shows in its compounds a wide variety of oxidation states ranging from −1 to +7.

Rhenium was originally discovered by Masataka Ogawa in 1908, but he mistakenly assigned it as element 43 rather than element 75 and named it nipponium. It was rediscovered by Walter Noddack, Ida Tacke and Otto Berg in 1925,[5] who gave it its present name. It was named after the river Rhine in Europe, from which the earliest samples had been obtained and worked commercially.[6]

Nickel-based superalloys of rhenium are used in combustion chambers, turbine blades, and exhaust nozzles of jet engines. These alloys contain up to 6% rhenium, making jet engine construction the largest single use for the element. The second-most important use is as a catalyst: it is an excellent catalyst for hydrogenation and isomerization, and is used for example in catalytic reforming of naphtha for use in gasoline (rheniforming process). Because of the low availability relative to demand, it is expensive, with price reaching an all-time high in 2008/2009 of US$10,600 per kilogram (US$4,800 per pound). Due to increases in recycling and a drop in demand for rhenium in catalysts, the price had dropped to US$2,844 per kilogram (US$1,290 per pound) as of July 2018.[7]


In 1908, Japan ese chemist Masataka Ogawa announced that he had discovered the 43rd element and named it nipponium (Np) after Japan (Nippon in Japanese). In fact, he had found element 75 (rhenium) instead of element 43: both elements are in the same group of the periodic table.[8][9] Ogawa's work was often incorrectly cited, because some of his key results were published only in Japanese; it is likely that his insistence on searching for element 43 prevented him from considering that he might have found element 75 instead. Just before Ogawa's death in 1930, Kenjiro Kimura analysed Ogawa's sample by X-ray spectroscopy at the Imperial University of Tokyo, and said to a friend that "it was beautiful rhenium indeed". He did not reveal this publicly, because under the Japanese university culture before World War II it was frowned upon to point out the mistakes of one's seniors, but the evidence became known to some Japanese news media regardless. As time passed with no repetitions of the experiments or new work on nipponium, Ogawa's claim faded away.[9] The symbol Np was later used for the element neptunium, and the name "nihonium", also named after Japan, along with symbol Nh, was later used for element 113. Element 113 was also discovered by a team of Japanese scientists and was named in respectful homage to Ogawa's work.[10] Today, Ogawa's claim is widely accepted as having been the discovery of element 75 in hindsight.[9]

Rhenium (Latin: Rhenus meaning: "Rhine")[11] received its current name when it was rediscovered by Walter Noddack, Ida Noddack, and Otto Berg in Germany . In 1925 they reported that they had detected the element in platinum ore and in the mineral columbite. They also found rhenium in gadolinite and molybdenite.[12] In 1928 they were able to extract 1 g of the element by processing 660 kg of molybdenite.[13] It was estimated in 1968 that 75% of the rhenium metal in the United States was used for research and the development of refractory metal alloys. It took several years from that point before the superalloys became widely used.[14][15]

The original mischaracterization by Ogawa in 1908 and final work in 1925 makes rhenium perhaps the last stable element to be understood. Hafnium was discovered in 1923[16] and all other new elements discovered since then, such as francium, are radioactive.[17]


Rhenium is a silvery-white metal with one of the highest melting points of all elements, exceeded by only tungsten. (At standard pressure carbon sublimes rather than melts, though its sublimation point is comparable to the melting points of tungsten and rhenium.) It also has one of the highest boiling points of all elements, and the highest among stable elements. It is also one of the densest, exceeded only by platinum, iridium and osmium. Rhenium has a hexagonal close-packed crystal structure, with lattice parameters a = 276.1 pm and c = 445.6 pm.[18]

Its usual commercial form is a powder, but this element can be consolidated by pressing and sintering in a vacuum or hydrogen atmosphere. This procedure yields a compact solid having a density above 90% of the density of the metal. When annealed this metal is very ductile and can be bent, coiled, or rolled.[19] Rhenium-molybdenum alloys are superconductive at 10 K; tungsten-rhenium alloys are also superconductive[20] around 4–8 K, depending on the alloy. Rhenium metal superconducts at 1.697±0.006 K.[21][22]

In bulk form and at room temperature and atmospheric pressure, the element resists alkalis, sulfuric acid, hydrochloric acid, nitric acid, and aqua regia. It will however, react with nitric acid upon heating.[23]


Main page: Physics:Isotopes of rhenium

Rhenium has one stable isotope, rhenium-185, which nevertheless occurs in minority abundance, a situation found only in two other elements (indium and tellurium). Naturally occurring rhenium is only 37.4% 185Re, and 62.6% 187Re, which is unstable but has a very long half-life (≈1010 years). A kilogram of natural rhenium emits 1.07 MBq of radiation due to the presence of this isotope. This lifetime can be greatly affected by the charge state of the rhenium atom.[24][25] The beta decay of 187Re is used for rhenium–osmium dating of ores. The available energy for this beta decay (2.6 keV) is the second lowest known among all radionuclides, only behind the decay from 115In to excited 115Sn* (0.147 keV).[26] The isotope rhenium-186m is notable as being one of the longest lived metastable isotopes with a half-life of around 200,000 years. There are 33 other unstable isotopes that have been recognized, ranging from 160Re to 194Re, the longest-lived of which is 183Re with a half-life of 70 days.[27]


Main page: Chemistry:Rhenium compounds

Rhenium compounds are known for all the oxidation states between −3 and +7 except −2. The oxidation states +7, +4, and +3 are the most common.[28] Rhenium is most available commercially as salts of perrhenate, including sodium and ammonium perrhenates. These are white, water-soluble compounds.[29] Tetrathioperrhenate anion [ReS4] is possible.[30]

Halides and oxyhalides

The most common rhenium chlorides are ReCl6, ReCl5, ReCl4, and ReCl3.[31] The structures of these compounds often feature extensive Re-Re bonding, which is characteristic of this metal in oxidation states lower than VII. Salts of [Re2Cl8]2− feature a quadruple metal-metal bond. Although the highest rhenium chloride features Re(VI), fluorine gives the d0 Re(VII) derivative rhenium heptafluoride. Bromides and iodides of rhenium are also well known, including rhenium pentabromide and rhenium tetraiodide.

Like tungsten and molybdenum, with which it shares chemical similarities, rhenium forms a variety of oxyhalides. The oxychlorides are most common, and include ReOCl4, ReOCl3.

Oxides and sulfides

Perrhenic acid (H4Re2O9) adopts an unconventional structure.

The most common oxide is the volatile yellow Re2O7. The red rhenium trioxide ReO3 adopts a perovskite-like structure. Other oxides include Re2O5, ReO2, and Re2O3.[31] The sulfides are ReS2 and Re2S7. Perrhenate salts can be converted to tetrathioperrhenate by the action of ammonium hydrosulfide.[32]

Other compounds

Rhenium diboride (ReB2) is a hard compound having a hardness similar to that of tungsten carbide, silicon carbide, titanium diboride or zirconium diboride.[33]

Organorhenium compounds

Main page: Chemistry:Organorhenium chemistry

Dirhenium decacarbonyl is the most common entry to organorhenium chemistry. Its reduction with sodium amalgam gives Na[Re(CO)5] with rhenium in the formal oxidation state −1.[34] Dirhenium decacarbonyl can be oxidised with bromine to bromopentacarbonylrhenium(I):[35]

Re2(CO)10 + Br2 → 2 Re(CO)5Br

Reduction of this pentacarbonyl with zinc and acetic acid gives pentacarbonylhydridorhenium:[36]

Re(CO)5Br + Zn + HOAc → Re(CO)5H + ZnBr(OAc)

Methylrhenium trioxide ("MTO"), CH3ReO3 is a volatile, colourless solid has been used as a catalyst in some laboratory experiments. It can be prepared by many routes, a typical method is the reaction of Re2O7 and tetramethyltin:

Re2O7 + (CH3)4Sn → CH3ReO3 + (CH3)3SnOReO3

Analogous alkyl and aryl derivatives are known. MTO catalyses for the oxidations with hydrogen peroxide. Terminal alkynes yield the corresponding acid or ester, internal alkynes yield diketones, and alkenes give epoxides. MTO also catalyses the conversion of aldehydes and diazoalkanes into an alkene.[37]


Structure of ReH2−9.

A distinctive derivative of rhenium is nonahydridorhenate, originally thought to be the rhenide anion, Re, but actually containing the ReH2−9 anion in which the oxidation state of rhenium is +7.



Rhenium is one of the rarest elements in Earth's crust with an average concentration of 1 ppb;[31] other sources quote the number of 0.5 ppb making it the 77th most abundant element in Earth's crust.[38] Rhenium is probably not found free in nature (its possible natural occurrence is uncertain), but occurs in amounts up to 0.2%[31] in the mineral molybdenite (which is primarily molybdenum disulfide), the major commercial source, although single molybdenite samples with up to 1.88% have been found.[39] Chile has the world's largest rhenium reserves, part of the copper ore deposits, and was the leading producer as of 2005.[40] It was only recently that the first rhenium mineral was found and described (in 1994), a rhenium sulfide mineral (ReS2) condensing from a fumarole on Kudriavy volcano, Iturup island, in the Kuril Islands.[41] Kudriavy discharges up to 20–60 kg rhenium per year mostly in the form of rhenium disulfide.[42][43] Named rheniite, this rare mineral commands high prices among collectors.[44]


Ammonium perrhenate

Approximately 80% of rhenium is extracted from porphyry molybdenum deposits.[45] Some ores contain 0.001% to 0.2% rhenium.[31] Roasting the ore volatilizes rhenium oxides.[39] Rhenium(VII) oxide and perrhenic acid readily dissolve in water; they are leached from flue dusts and gasses and extracted by precipitating with potassium or ammonium chloride as the perrhenate salts, and purified by recrystallization.[31] Total world production is between 40 and 50 tons/year; the main producers are in Chile, the United States, Peru, and Poland.[46] Recycling of used Pt-Re catalyst and special alloys allow the recovery of another 10 tons per year. Prices for the metal rose rapidly in early 2008, from $1000–$2000 per kg in 2003–2006 to over $10,000 in February 2008.[47][48] The metal form is prepared by reducing ammonium perrhenate with hydrogen at high temperatures:[29]

2 NH4ReO4 + 7 H2 → 2 Re + 8 H2O + 2 NH3

There are technologies for the associated extraction of rhenium from productive solutions of underground leaching of uranium ores.[49]


The Pratt & Whitney F-100 engine uses rhenium-containing second-generation superalloys

Rhenium is added to high-temperature superalloys that are used to make jet engine parts, using 70% of the worldwide rhenium production.[50] Another major application is in platinum–rhenium catalysts, which are primarily used in making lead-free, high-octane gasoline.[51]


The nickel-based superalloys have improved creep strength with the addition of rhenium. The alloys normally contain 3% or 6% of rhenium.[52] Second-generation alloys contain 3%; these alloys were used in the engines for the F-15 and F-16, whereas the newer single-crystal third-generation alloys contain 6% of rhenium; they are used in the F-22 and F-35 engines.[51][53] Rhenium is also used in the superalloys, such as CMSX-4 (2nd gen) and CMSX-10 (3rd gen) that are used in industrial gas turbine engines like the GE 7FA. Rhenium can cause superalloys to become microstructurally unstable, forming undesirable topologically close packed (TCP) phases. In 4th- and 5th-generation superalloys, ruthenium is used to avoid this effect. Among others the new superalloys are EPM-102 (with 3% Ru) and TMS-162 (with 6% Ru),[54] as well as TMS-138[55] and TMS-174.[56][57]

CFM International CFM56 jet engine with blades made with 3% rhenium

For 2006, the consumption is given as 28% for General Electric, 28% Rolls-Royce plc and 12% Pratt & Whitney, all for superalloys, whereas the use for catalysts only accounts for 14% and the remaining applications use 18%.[50] In 2006, 77% of rhenium consumption in the United States was in alloys.[51] The rising demand for military jet engines and the constant supply made it necessary to develop superalloys with a lower rhenium content. For example, the newer CFM International CFM56 high-pressure turbine (HPT) blades will use Rene N515 with a rhenium content of 1.5% instead of Rene N5 with 3%.[58][59]

Rhenium improves the properties of tungsten. Tungsten-rhenium alloys are more ductile at low temperature, allowing them to be more easily machined. The high-temperature stability is also improved. The effect increases with the rhenium concentration, and therefore tungsten alloys are produced with up to 27% of Re, which is the solubility limit.[60] Tungsten-rhenium wire was originally created in efforts to develop a wire that was more ductile after recrystallization. This allows the wire to meet specific performance objectives, including superior vibration resistance, improved ductility, and higher resistivity.[61] One application for the tungsten-rhenium alloys is X-ray sources. The high melting point of both elements, together with their high atomic mass, makes them stable against the prolonged electron impact.[62] Rhenium tungsten alloys are also applied as thermocouples to measure temperatures up to 2200 °C.[63]

The high temperature stability, low vapor pressure, good wear resistance and ability to withstand arc corrosion of rhenium are useful in self-cleaning electrical contacts. In particular, the discharge that occurs during electrical switching oxidizes the contacts. However, rhenium oxide Re2O7 is volatile (sublimes at ~360 °C) and therefore is removed during the discharge.[50]

Rhenium has a high melting point and a low vapor pressure similar to tantalum and tungsten. Therefore, rhenium filaments exhibit a higher stability if the filament is operated not in vacuum, but in oxygen-containing atmosphere.[64] Those filaments are widely used in mass spectrometers, ion gauges[65] and photoflash lamps in photography.[66]


Rhenium in the form of rhenium-platinum alloy is used as catalyst for catalytic reforming, which is a chemical process to convert petroleum refinery naphthas with low octane ratings into high-octane liquid products. Worldwide, 30% of catalysts used for this process contain rhenium.[67] The olefin metathesis is the other reaction for which rhenium is used as catalyst. Normally Re2O7 on alumina is used for this process.[68] Rhenium catalysts are very resistant to chemical poisoning from nitrogen, sulfur and phosphorus, and so are used in certain kinds of hydrogenation reactions.[19][69][70]

Other uses

The isotopes 186Re and 188Re are radioactive and are used for treatment of liver cancer. They both have similar penetration depth in tissue (5 mm for 186Re and 11 mm for 188Re), but 186Re has the advantage of a longer half life (90 hours vs. 17 hours).[71][72]

188Re is also being used experimentally in a novel treatment of pancreatic cancer where it is delivered by means of the bacterium Listeria monocytogenes.[73] The 188Re isotope is also used for the rhenium-SCT (skin cancer therapy). The treatment uses the isotope's properties as a beta emitter for brachytherapy in the treatment of basal cell carcinoma and squamous cell carcinoma of the skin.[74]

Related by periodic trends, rhenium has a similar chemistry to that of technetium; work done to label rhenium onto target compounds can often be translated to technetium. This is useful for radiopharmacy, where it is difficult to work with technetium – especially the technetium-99m isotope used in medicine – due to its expense and short half-life.[71][75]


Very little is known about the toxicity of rhenium and its compounds because they are used in very small amounts. Soluble salts, such as the rhenium halides or perrhenates, could be hazardous due to elements other than rhenium or due to rhenium itself.[76] Only a few compounds of rhenium have been tested for their acute toxicity; two examples are potassium perrhenate and rhenium trichloride, which were injected as a solution into rats. The perrhenate had an LD50 value of 2800 mg/kg after seven days (this is very low toxicity, similar to that of table salt) and the rhenium trichloride showed LD50 of 280 mg/kg.[77]


  1. Meija, Juris; Coplen, Tyler B.; Berglund, Michael; Brand, Willi A.; De Bièvre, Paul; Gröning, Manfred; Holden, Norman E.; Irrgeher, Johanna et al. (2016). "Atomic weights of the elements 2013 (IUPAC Technical Report)". Pure and Applied Chemistry 88 (3): 265–91. doi:10.1515/pac-2015-0305. 
  2. Lide, D. R., ed (2005). "Magnetic susceptibility of the elements and inorganic compounds". CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. ISBN 0-8493-0486-5. 
  3. Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. pp. E110. ISBN 0-8493-0464-4. 
  4. Zhang, Yiming (2011-01-11). "Corrected Values for Boiling Points and Enthalpies of Vaporization of Elements in Handbooks". Journal of Chemical & Engineering Data 56. 
  5. "Die Ekamangane" (in de). Naturwissenschaften 13 (26): 567–574. 1925-06-01. doi:10.1007/BF01558746. ISSN 1432-1904. Bibcode1925NW.....13..567.. 
  6. "From Hydrogen to Darmstadtium & More". American Chemical Society. 2003. p. 144. 
  7. "BASF Catalysts - Metal Prices". 
  8. Yoshihara, H. K. (2004). "Discovery of a new element 'nipponiumʼ: re-evaluation of pioneering works of Masataka Ogawa and his son Eijiro Ogawa". Spectrochimica Acta Part B: Atomic Spectroscopy 59 (8): 1305–1310. doi:10.1016/j.sab.2003.12.027. Bibcode2004AcSpe..59.1305Y. 
  9. 9.0 9.1 9.2 Hisamatsu, Yoji; Egashira, Kazuhiro; Maeno, Yoshiteru (2022). "Ogawa’s nipponium and its re-assignment to rhenium". Foundations of Chemistry 24: 15–57. doi:10.1007/s10698-021-09410-x. Retrieved 16 November 2023. 
  10. Öhrström, Lars; Reedijk, Jan (28 November 2016). "Names and symbols of the elements with atomic numbers 113, 115, 117 and 118 (IUPAC Recommendations 2016)". Pure Appl. Chem. 88 (12): 1225–1229. doi:10.1515/pac-2016-0501. Retrieved 22 April 2017. 
  11. Tilgner, Hans Georg (2000) (in de). Forschen Suche und Sucht. Books on Demand. ISBN 978-3-89811-272-7. 
  12. Noddack, W.; Tacke, I.; Berg, O. (1925). "Die Ekamangane". Naturwissenschaften 13 (26): 567–574. doi:10.1007/BF01558746. Bibcode1925NW.....13..567.. 
  13. Noddack, W.; Noddack, I. (1929). "Die Herstellung von einem Gram Rhenium" (in de). Zeitschrift für Anorganische und Allgemeine Chemie 183 (1): 353–375. doi:10.1002/zaac.19291830126. 
  14. Committee On Technical Aspects Of Critical And Strategic Material, National Research Council (U.S.) (1968). Trends in usage of rhenium: Report. pp. 4–5. 
  15. Savitskiĭ, Evgeniĭ Mikhaĭlovich; Tulkina, Mariia Aronovna; Povarova, Kira Borisovna (1970). Rhenium alloys. 
  16. "Two Danes Discover New Element, Hafnium – Detect It by Means of Spectrum Analysis of Ore Containing Zirconium", The New York Times, January 20, 1923, p. 4
  17. "Rhenium: Statistics and Information". Minerals Information. United States Geological Survey. 2011. 
  18. Liu, L. G.; Takahashi, T.; Bassett, W. A. (1970). "Effect of pressure and temperature on lattice parameters of rhenium". Journal of Physics and Chemistry of Solids 31 (6): 1345–1351. doi:10.1016/0022-3697(70)90138-1. Bibcode1970JPCS...31.1345L. 
  19. 19.0 19.1 Hammond, C. R. (2004). "The Elements". Handbook of Chemistry and Physics (81st ed.). CRC press. ISBN 978-0-8493-0485-9. 
  20. Neshpor, V. S.; Novikov, V. I.; Noskin, V. A.; Shalyt, S. S. (1968). "Superconductivity of Some Alloys of the Tungsten-rhenium-carbon System". Soviet Physics JETP 27: 13. Bibcode1968JETP...27...13N. 
  21. Haynes, William M., ed (2011). CRC Handbook of Chemistry and Physics (92nd ed.). CRC Press. p. 12.60. ISBN 978-1439855119. 
  22. Daunt, J. G.; Lerner, E.. "The Properties of Superconducting Mo-Re Alloys". Defense Technical Information Center. 
  24. Johnson, Bill (1993). "How to Change Nuclear Decay Rates". 
  25. Bosch, F.; Faestermann, T.; Friese, J. et al. (1996). "Observation of bound-state β decay of fully ionized 187Re: 187Re-187Os Cosmochronometry". Physical Review Letters 77 (26): 5190–5193. doi:10.1103/PhysRevLett.77.5190. PMID 10062738. Bibcode1996PhRvL..77.5190B. 
  26. Belli, P.; Bernabei, R.; Danevich, F. A.; Incicchitti, A.; Tretyak, V. I. (2019). "Experimental searches for rare alpha and beta decays". The European Physical Journal A (Springer Science and Business Media LLC) 55 (8). doi:10.1140/epja/i2019-12823-2. ISSN 1434-6001. 
  27. Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017). "The NUBASE2016 evaluation of nuclear properties". Chinese Physics C 41 (3): 030001. doi:10.1088/1674-1137/41/3/030001. Bibcode2017ChPhC..41c0001A. 
  28. Housecroft, Catherine E.; Sharpe, Alan G. (2018). Inorganic Chemistry (5th ed.). Pearson Prentice-Hal. p. 829. ISBN 1292-13414-3. 
  29. 29.0 29.1 Glemser, O. (1963) "Ammonium Perrhenate" in Handbook of Preparative Inorganic Chemistry, 2nd ed., G. Brauer (ed.), Academic Press, NY., Vol. 1, pp. 1476–85.
  30. Goodman, JT; Rauchfuss, TB (2002). Tetraethylammonium-tetrathioperrhenate [Et4N][ReS4]. Inorganic Syntheses. 33. pp. 107–110. doi:10.1002/0471224502.ch2. ISBN 0471208256. 
  31. 31.0 31.1 31.2 31.3 31.4 31.5 Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8. 
  32. Goodman, J. T.; Rauchfuss, T. B. (2002). Tetraethylammonium-tetrathioperrhenate [Et4N] [ReS4]. Inorganic Syntheses. 33. pp. 107–110. doi:10.1002/0471224502.ch2. ISBN 9780471208259. 
  33. Qin, Jiaqian; He, Duanwei; Wang, Jianghua; Fang, Leiming; Lei, Li; Li, Yongjun; Hu, Juan; Kou, Zili et al. (2008). "Is Rhenium Diboride a Superhard Material?". Advanced Materials 20 (24): 4780–4783. doi:10.1002/adma.200801471. Bibcode2008AdM....20.4780Q. 
  34. Breimair, Josef; Steimann, Manfred; Wagner, Barbara; Beck, Wolfgang (1990). "Nucleophile Addition von Carbonylmetallaten an kationische Alkin-Komplexe [CpL2M(η2-RC≡CR)]+ (M = Ru, Fe): μ-η1:η1-Alkin-verbrückte Komplexe". Chemische Berichte 123: 7. doi:10.1002/cber.19901230103. 
  35. Schmidt, Steven P.; Trogler, William C.; Basolo, Fred (1990). Pentacarbonylrhenium Halides. Inorganic Syntheses. 28. pp. 154–159. doi:10.1002/9780470132593.ch42. ISBN 978-0-470-13259-3. 
  36. Michael A. Urbancic; John R. Shapley (1990). Pentacarbonylhydridorhenium. Inorganic Syntheses. 28. pp. 165–168. doi:10.1002/9780470132593.ch43. ISBN 978-0-470-13259-3. 
  37. Hudson, A. (2002) “Methyltrioxorhenium” in Encyclopedia of Reagents for Organic Synthesis. John Wiley & Sons: New York, ISBN:9780470842898, doi:10.1002/047084289X.
  38. Emsley, John (2001). "Rhenium". Nature's Building Blocks: An A-Z Guide to the Elements. Oxford, England, UK: Oxford University Press. pp. 358–360. ISBN 978-0-19-850340-8. 
  39. 39.0 39.1 Rouschias, George (1974). "Recent advances in the chemistry of rhenium". Chemical Reviews 74 (5): 531. doi:10.1021/cr60291a002. 
  40. Anderson, Steve T.. "2005 Minerals Yearbook: Chile". United States Geological Survey. 
  41. Korzhinsky, M. A.; Tkachenko, S. I.; Shmulovich, K. I.; Taran Y. A.; Steinberg, G. S. (2004-05-05). "Discovery of a pure rhenium mineral at Kudriavy volcano". Nature 369 (6475): 51–52. doi:10.1038/369051a0. Bibcode1994Natur.369...51K. 
  42. Kremenetsky, A. A.; Chaplygin, I. V. (2010). "Concentration of rhenium and other rare metals in gases of the Kudryavy Volcano (Iturup Island, Kurile Islands)". Doklady Earth Sciences 430 (1): 114. doi:10.1134/S1028334X10010253. Bibcode2010DokES.430..114K. 
  43. Tessalina, S.; Yudovskaya, M.; Chaplygin, I.; Birck, J.; Capmas, F. (2008). "Sources of unique rhenium enrichment in fumaroles and sulphides at Kudryavy volcano". Geochimica et Cosmochimica Acta 72 (3): 889. doi:10.1016/j.gca.2007.11.015. Bibcode2008GeCoA..72..889T. 
  44. "The Mineral Rheniite". Amethyst Galleries. 
  45. John, D. A.; Taylor, R. D. (2016). "Chapter 7: By-Products of Porphyry Copper and Molybdenum Deposits". in Philip L. Verplanck and Murray W. Hitzman. Rare earth and critical elements in ore deposits. 18. pp. 137–164. doi:10.5382/Rev.18.07. 
  46. Magyar, Michael J. (January 2012). "Rhenium". Mineral Commodity Summaries. U.S. Geological Survey. 
  47. "MinorMetal prices". 
  48. Harvey, Jan (2008-07-10). "Analysis: Super hot metal rhenium may reach "platinum prices"". Reuters India. 
  49. Rudenko, A.A.; Troshkina, I.D.; Danileyko, V.V.; Barabanov, O.S.; Vatsura, F.Y. (2021). "Prospects for selective-and-advanced recovery of rhenium from pregnant solutions of in-situ leaching of uranium ores at Dobrovolnoye deposit". Gornye Nauki I Tekhnologii = Mining Science and Technology (Russia) 6 (3): 158–169. doi:10.17073/2500-0632-2021-3-158-169. 
  50. 50.0 50.1 50.2 Naumov, A. V. (2007). "Rhythms of rhenium". Russian Journal of Non-Ferrous Metals 48 (6): 418–423. doi:10.3103/S1067821207060089. 
  51. 51.0 51.1 51.2 Magyar, Michael J. (April 2011). "2009 Mineral Yearbook: Rhenium". United States Geological Survey. 
  52. Bhadeshia, H. K. D. H.. "Nickel Based Superalloys". University of Cambridge. 
  53. Cantor, B.; Grant, Patrick Assender Hazel (2001). Aerospace Materials: An Oxford-Kobe Materials Text. CRC Press. pp. 82–83. ISBN 978-0-7503-0742-0. 
  54. Bondarenko, Yu. A.; Kablov, E. N.; Surova, V. A.; Echin, A. B. (2006). "Effect of high-gradient directed crystallization on the structure and properties of rhenium-bearing single-crystal alloy". Metal Science and Heat Treatment 48 (7–8): 360. doi:10.1007/s11041-006-0099-6. Bibcode2006MSHT...48..360B. 
  55. "Fourth generation nickel base single crystal superalloy". 
  56. Koizumi, Yutaka. "Development of a Next-Generation Ni-base Single Crystal Superalloy". Proceedings of the International Gas Turbine Congress, Tokyo November 2–7, 2003. 
  57. Walston, S.; Cetel, A.; MacKay, R.; O'Hara, K.; Duhl, D.; Dreshfield, R.. "Joint Development of a Fourth Generation Single Crystal Superalloy". 
  58. Fink, Paul J.; Miller, Joshua L.; Konitzer, Douglas G. (2010). "Rhenium reduction—alloy design using an economically strategic element". JOM 62 (1): 55. doi:10.1007/s11837-010-0012-z. Bibcode2010JOM....62a..55F. 
  59. Konitzer, Douglas G. (September 2010). "Design in an Era of Constrained Resources". 
  60. Lassner, Erik; Schubert, Wolf-Dieter (1999). Tungsten: properties, chemistry, technology of the element, alloys, and chemical compounds. Springer. p. 256. ISBN 978-0-306-45053-2. 
  61. "Tungsten-Rhenium - Union City Filament" (in en-US). Union City Filament. 
  62. Cherry, Pam; Duxbury, Angela (1998). Practical radiotherapy physics and equipment. Cambridge University Press. p. 55. ISBN 978-1-900151-06-1. 
  63. Asamoto, R.; Novak, P. E. (1968). "Tungsten-Rhenium Thermocouples for Use at High Temperatures". Review of Scientific Instruments 39 (8): 1233. doi:10.1063/1.1683642. Bibcode1968RScI...39.1233A. 
  64. Blackburn, Paul E. (1966). "The Vapor Pressure of Rhenium". The Journal of Physical Chemistry 70: 311–312. doi:10.1021/j100873a513. 
  65. Earle, G. D.; Medikonduri, R.; Rajagopal, N.; Narayanan, V.; Roddy, P. A. (2005). "Tungsten-Rhenium Filament Lifetime Variability in Low Pressure Oxygen Environments". IEEE Transactions on Plasma Science 33 (5): 1736–1737. doi:10.1109/TPS.2005.856413. Bibcode2005ITPS...33.1736E. 
  66. Ede, Andrew (2006). The chemical element: a historical perspective. Greenwood Publishing Group. ISBN 978-0-313-33304-0. 
  67. Ryashentseva, Margarita A. (1998). "Rhenium-containing catalysts in reactions of organic compounds". Russian Chemical Reviews 67 (2): 157–177. doi:10.1070/RC1998v067n02ABEH000390. Bibcode1998RuCRv..67..157R. 
  68. Mol, Johannes C. (1999). "Olefin metathesis over supported rhenium oxide catalysts". Catalysis Today 51 (2): 289–299. doi:10.1016/S0920-5861(99)00051-6. 
  69. Angelidis, T. N.; Rosopoulou, D. Tzitzios V. (1999). "Selective Rhenium Recovery from Spent Reforming Catalysts". Ind. Eng. Chem. Res. 38 (5): 1830–1836. doi:10.1021/ie9806242. 
  70. Burch, Robert (1978). "The Oxidation State of Rhenium and Its Role in Platinum-Rhenium". Platinum Metals Review 22 (2): 57–60. 
  71. 71.0 71.1 Dilworth, Jonathan R.; Parrott, Suzanne J. (1998). "The biomedical chemistry of technetium and rhenium". Chemical Society Reviews 27: 43–55. doi:10.1039/a827043z. 
  72. "The Tungsten-188 and Rhenium-188 Generator Information". Oak Ridge National Laboratory. 2005. 
  73. Baker, Monya (22 April 2013). "Radioactive bacteria attack cancer". Nature. doi:10.1038/nature.2013.12841. 
  74. Cipriani, Cesidio; Desantis, Maria; Dahlhoff, Gerhard; Brown, Shannon D.; Wendler, Thomas; Olmeda, Mar; Pietsch, Gunilla; Eberlein, Bernadette (2020-07-22). "Personalized irradiation therapy for NMSC by rhenium-188 skin cancer therapy: a long-term retrospective study" (in en). Journal of Dermatological Treatment 33 (2): 969–975. doi:10.1080/09546634.2020.1793890. ISSN 0954-6634. PMID 32648530. 
  75. Colton, R.; Peacock R. D. (1962). "An outline of technetium chemistry". Quarterly Reviews, Chemical Society 16 (4): 299–315. doi:10.1039/QR9621600299. 
  76. Emsley, J. (2003). "Rhenium". Nature's Building Blocks: An A-Z Guide to the Elements. Oxford, England, UK: Oxford University Press. pp. 358–361. ISBN 978-0-19-850340-8. 
  77. Haley, Thomas J.; Cartwright, Frank D. (1968). "Pharmacology and toxicology of potassium perrhenate and rhenium trichloride". Journal of Pharmaceutical Sciences 57 (2): 321–323. doi:10.1002/jps.2600570218. PMID 5641681. 

External links

  • Rhenium at The Periodic Table of Videos (University of Nottingham)